Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T14:26:52.634Z Has data issue: false hasContentIssue false

The agroecology of an early state: new results from Hattusha

Published online by Cambridge University Press:  10 September 2020

Charlotte Diffey
Affiliation:
School of Archaeology, University of Oxford, UK School of Archaeology, Geography and Environmental Science, University of Reading, UK
Reinder Neef
Affiliation:
Deutsches Archäologisches Institut, Berlin, Germany
Jürgen Seeher
Affiliation:
Deutsches Archäologisches Institut, Istanbul, Turkey
Amy Bogaard*
Affiliation:
School of Archaeology, University of Oxford, UK
*
*Author for correspondence: ✉ amy.bogaard@arch.ox.ac.uk

Abstract

The discovery of a large underground silo complex with spectacular intact grain stores at the Late Bronze Age Hittite capital of Hattusha in Turkey provides a unique snapshot of the mobilisation of crop production by the Hittite state. A combination of primary archaeobotanical analysis, crop stable isotope determinations and functional weed ecology reveals new insights into Hittite cultivation strategies, featuring a range of relatively low-input, extensive production regimes for hulled wheats and hulled barley. Taxation of extensively produced grain in the sixteenth century BC reveals how an ancient state sought to sustain itself, providing wider implications for the politics and ecology of territorially expansive states in Western Asia and beyond.

Type
Research Article
Copyright
Copyright © Antiquity Publications Ltd, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araus, J.L., Febrero, A., Buxo, R., Camalich, M., Martin, D., Molina, F., Rodriguez-Ariza, M. & Romagosa, I.. 1997. Changes in carbon isotope discrimination in grain cereals from different regions of the Western Mediterranean Basin during the past seven millennia: palaeoenvironmental evidence of a differential change in aridity during the Late Holocene. Global Change Biology 3: 107–18. https://doi.org/10.1046/j.1365-2486.1997.00056.xCrossRefGoogle Scholar
Bogaard, A., Heaton, T.H.E., Poulton, P. & Merbach, I.. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34: 335–43. https://doi.org/10.1016/j.jas.2006.04.009CrossRefGoogle Scholar
Bogaard, A. et al. 2013. Crop manuring and intensive land management by Europe's first farmers. Proceedings of the National Academy of Sciences of the USA 110: 12589–94. https://doi.org/10.1073/pnas.1305918110CrossRefGoogle ScholarPubMed
Bogaard, A. et al. 2016. Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain. Vegetation History and Archaeobotany 25: 5773. https://doi.org/10.1007/s00334-015-0524-0CrossRefGoogle ScholarPubMed
Bogaard, A. et al. 2018. From traditional farming in Morocco to early urban agroecology in northern Mesopotamia: combining present-day arable weed surveys and crop ‘isoscapes’ to reconstruct past agrosystems in (semi-)arid regions. Environmental Archaeology 23: 303–22. https://doi.org/10.1080/14614103.2016.1261217CrossRefGoogle Scholar
Bogaard, A. et al. 2019. The farming-inequality nexus: new insights from ancient Western Eurasia. Antiquity 93: 1129–43. https://doi.org/10.15184/aqy.2019.105CrossRefGoogle Scholar
Branting, S. 1996. The Alişar regional survey 1993–1994: a preliminary report. Anatolica 22: 145–58.Google Scholar
Bryce, T. 2002. Life and society in the Hittite world. Oxford: Oxford University Press.Google Scholar
Diffey, C., Neef, R. & Bogaard, A.. 2017. The archaeobotany of large-scale hermetic cereal storage at the Hittite capital of Hattusha, in Schachner, A. (ed.) Innovation versus Beharrung: was macht den Unterschied des hethitischen Reichs im Anatolien des 2. Jahrtausends v. Chr.? (Byzas 23): 185202. Istanbul: Ege Yayınları.Google Scholar
Dörfler, W., Harking, C., Neef, R., Pasternak, R. & von den Driesch, A.. 2011. Environment and economy in Hittite Anatolia, in Genz, H. & Mielke, D.P. (ed.) Insights into Hittite history and archaeology: 99124. Leuven: Peeters.Google Scholar
Fairbairn, A. & Omura, S.. 2005. Archaeological identification and significance of ÉSAG (agricultural storage pits) at Kaman-Kalehöyük, Central Anatolia. Anatolian Studies 55: 1523. https://doi.org/10.1017/S0066154600000636CrossRefGoogle Scholar
Fraser, R. et al. 2011. Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science 38: 27902804. https://doi.org/10.1016/j.jas.2011.06.024CrossRefGoogle Scholar
Halstead, P. 2014. Two oxen ahead: pre-mechanized farming in the Mediterranean. Oxford: Blackwell. https://doi.org/10.1002/9781118819333CrossRefGoogle Scholar
Hillman, G. 1985. Traditional husbandry and processing of archaic cereals in recent times: the operations, products and equipment that might feature in Sumerian texts. Part II: the free-threshing cereals. Bulletin on Sumerian Agriculture 2: 131.Google Scholar
Hoffner, H.A. 1974. Alimenta Hethaeorum: food production in Hittite Asia Minor (American Oriental Series 55). New Haven (CT): American Oriental Society.Google Scholar
Jones, G. 1984. Interpretation of archaeological plant remains: ethnographic models from Greece, in van Zeist, W. & Casparie, W.A. (ed.) Plants and ancient man: 4361. Rotterdam: Balkema.Google Scholar
Jones, G. 1987. A statistical approach to the archaeological identification of charred archaeobotanical remains. Circaea 6: 9196.Google Scholar
Jones, G. 2005. Garden cultivation of staple crops and its implications for settlement location and permanence. World Archaeology 37: 164–76. https://doi.org/10.1080/00438240500094564CrossRefGoogle Scholar
Jones, G., Bogaard, A., Halstead, P., Charles, M. & Smith, H.. 1999. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annual of the British School at Athens 94: 167–89. https://doi.org/10.1017/S0068245400000563CrossRefGoogle Scholar
Jones, G., Bogaard, A., Charles, M. & Hodgson, J.. 2000. Distinguishing the effects of agricultural practices relating to fertility and disturbance: a functional ecological approach in archaeobotany. Journal of Archaeological Science 27: 1073–84. https://doi.org/10.1006/jasc.1999.0543CrossRefGoogle Scholar
Kragten, J. 1994. Tutorial review: calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 119: 2161–65. https://doi.org/10.1039/an9941902161CrossRefGoogle Scholar
Neef, R. 2001. Getreide im Silokomplex an der Poternenmauer (Boğazköy)—Erste Aussagen zur Landwirtschaft. Archäologischer Anzeiger 3: 335–41.Google Scholar
Neef, R., Cappers, R.T.J. & Bekker, R.M.. 2012. Digital atlas of economic plants in archaeology. Groningen: Barkhuis & Groningen University Library. https://doi.org/10.2307/j.ctt20p56d7CrossRefGoogle Scholar
Nesbitt, M. 1996. Chalcolithic crops from Kuruçay Höyük: an interim report, in Duru, R. (ed.) Kuruçay Höyük II: results of the excavations 19781988 in Late Chalcolithic and Early Bronze settlements. Ankara: Türk Tarih Kurumu Basımevi.Google Scholar
Nitsch, E.K., Charles, M. & Bogaard, A.. 2015. Calculating a statistically robust δ13C and δ15N offset for charred cereal and pulse seeds. Science and Technology of Archaeological Research 1: 14. https://doi.org/10.1179/2054892315Y.0000000001CrossRefGoogle Scholar
Privitera, S. 2014. Long-term grain storage and political economy in Bronze Age Crete: contextualizing Ayia Triada's silo complexes. American Journal of Archaeology 118: 429–49. https://doi.org/10.3764/aja.118.3.0429CrossRefGoogle Scholar
Roberts, N., Eastwood, W.J., Kuzucuoğlu, C., Fiorentino, G. & Caracuta, V.. 2011. Climatic, vegetation and cultural change in the Eastern Mediterranean during the Mid-Holocene environmental transition. The Holocene 21: 147–62. https://doi.org/10.1177/0959683610386819CrossRefGoogle Scholar
Schachner, A. 2011. Hattuscha. Die Hauptstadt der Hethiter: auf der Suche nach dem sagenhaften Großreich der Hethiter. Munich: C.H. Beck.Google Scholar
Scott, J.C. 2017. Against the grain. New Haven (CT): Yale University Press.CrossRefGoogle Scholar
Seeher, J. 1995. Forty years in the capital of the Hittites: Peter Neve retires from his position as director of the Ḫattuša-Boğazköy excavations. The Biblical Archaeologist 58: 6367. https://doi.org/10.2307/3210476CrossRefGoogle Scholar
Seeher, J. 2000. Die Ausgrabungen in Boğazköy-Ḫattuša 1999. Archäologischer Anzeiger 355–76.Google Scholar
Seeher, J. 2006. Ergebnisse der Grabungen an den Ostteichen und am mittleren Büyükkale-Nordwesthang in den Jahren 1996–2000 (Boğazköy-Berichte 8). Mainz am Rhein: Philipp von Zabern.Google Scholar
Seeher, J. 2017. Die Besiedlung des Mittleren und Unteren Plateaus in hethitischer Zeit, in Seeher, J. (ed.) Büyükkaya II. Bauwerke und Befunde der Grabungskampagnen 1952–1955 und 1993–1998 (Boğazköy-Ḫattuša Ergebnisse der Ausgrabungen 27): 3287. Berlin: Deutsches Archäologisches Institut & Walter De Gruyter.Google Scholar
Stratil-Sauer, G. 1933. Cereal production in Turkey. Economic Geography 9: 325–36. https://doi.org/10.2307/140488CrossRefGoogle Scholar
Styring, A.K., Ater, M., Hmimsa, Y., Fraser, R., Miller, H., Neef, R., Pearson, J.A. & Bogaard, A.. 2016. Disentangling the effect of farming practice from aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sties in the Eastern Mediterranean. The Anthropocene Review 3: 121. https://doi.org/10.1177/2053019616630762CrossRefGoogle Scholar
Styring, A.K. et al. 2017. Isotope evidence for agricultural extensification reveals how the world's first cities were fed. Nature Plants 3: 111. https://doi.org/10.1038/nplants.2017.76CrossRefGoogle ScholarPubMed
Szpak, P., Metcalfe, J.Z. & Macdonald, R.A.. 2017. Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science Reports 13: 609–16. https://doi.org/10.1016/j.jasrep.2017.05.007CrossRefGoogle Scholar
Ter Braak, C.F.J. & Smilauer, P.. 2012. CANOCO for Windows version 4.5. Wageningen: Centre for Biometry.Google Scholar
Vaiglova, P., Bogaard, A., Collins, M., Cavanagh, W., Mee, C., Renard, J., Lamb, A., Gardeisen, A. & Fraser, R.. 2014. An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: a new look at Neolithic farming. Journal of Archaeological Science 42: 201–15. https://doi.org/10.1016/j.jas.2013.10.023CrossRefGoogle Scholar
Wallace, M., Jones, G., Charles, M., Fraser, R., Halstead, P., Heaton, T.H.E. & Bogaard, A.. 2013. Stable carbon isotopes analysis as a direct means of inferring crop water status and water management practices. World Archaeology 45: 388409. https://doi.org/10.1080/00438243.2013.821671CrossRefGoogle Scholar
Wilkinson, T.J. et al. 1994. The structure and dynamics of dry-farming states in upper Mesopotamia. Current Anthropology 35: 483520. https://doi.org/10.1086/204314CrossRefGoogle Scholar
Wright, N.J., Fairbairn, A.S., Tyler Faith, J. & Matsumura, K.. 2015. Woodland modification in Bronze and Iron Age Central Anatolia: an anthracological signature for the Hittite state? Journal of Archaeological Science 55: 219–30. https://doi.org/10.1016/j.jas.2014.12.021CrossRefGoogle Scholar
Yakar, J. 2000. Ethnoarchaeology of Anatolia: rural socio-economy in the Bronze and Iron Ages. Sydney: Emery and Claire Yass.Google Scholar
Supplementary material: PDF

Diffey et al. supplementary material

Diffey et al. supplementary material

Download Diffey et al. supplementary material(PDF)
PDF 398.5 KB