Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T11:37:06.227Z Has data issue: false hasContentIssue false

Temporal variability of ground thermal regimes on the northern buttress of the Vesleskarvet nunatak, western Dronning Maud Land, Antarctica

Published online by Cambridge University Press:  17 October 2016

Camilla Kotzé*
Affiliation:
Department of Geography, Rhodes University, 6140 Grahamstown, South Africa
Ian Meiklejohn
Affiliation:
Department of Geography, Rhodes University, 6140 Grahamstown, South Africa

Abstract

The ground temperature down to 60 cm depth in western Dronning Maud Land (WDML), has been recorded since 2009. The study area is situated in a blockfield that comprises a shallow active layer above permafrost. Using ground thermal regimes and regional climate data, the temporal (seasonal and annual) variability of the active layer was characterized. Active layer depth was calculated for each site for five consecutive summers from 2009/10–2013/14, showing interannual variability with no overall trends of decreasing or increasing active layer depth. Particular attention was paid to 2010 as it matched the average for the ground thermal regimes over the six year study period, as well as the interpolation period used by Meteonorm®. Analysis showed significant synchronous relationships of ground thermal regimes with air temperature and incoming radiation. Moreover, a correlation between pressure and measured ground temperature during the transitional season of the Southern Annual Oscillation in May and September was identified.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlam, L.S., Balks, M.R., Seybold, C.A. & Campbell, D.I. 2010. Temporal and spatial variation in active layer depth in the McMurdo Sound Region, Antarctica. Antarctic Science, 22, 10.1017/S0954102009990460.CrossRefGoogle Scholar
Almeida, I.C.C., Schaefer, C.E.G.R., Fernandes, R.B.A., Pereira, T.T.C., Nieuwendam, A. & Pereira, A.B. 2014. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica. Geomorphology, 225, 10.1016/j.geomorph.2014.03.048.CrossRefGoogle Scholar
Anisimov, O.A., Vaughan, D.G., Callaghan, T.V., Furgal, C., Marchant, H., Prowse, T.D., Vilhjálmsson, H. & Walsh, J.E. 2007. Polar regions (Arctic and Antarctic). In Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E., eds. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 653685.Google Scholar
Bockheim, J.G. & Hall, K.J. 2002. Permafrost, active-layer dynamics and periglacial environments of Continental Antarctica. South African Journal of Science, 98, 8290.Google Scholar
Bockheim, J.G., Campbell, I.B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217227.Google Scholar
Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K. & Nieuwendam, A. 2013. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100, 10.1016/j.gloplacha.2012.10.018.Google Scholar
Bridgman, H.A. & Oliver, J.E. 2006. The global climate system: patterns, processes, and teleconnections. Cambridge: Cambridge University Press, 325 pp.CrossRefGoogle Scholar
Burn, C.R. 1998. The active layer: two contrasting definitions. Permafrost and Periglacial Processes, 9, 411416.3.0.CO;2-6>CrossRefGoogle Scholar
Cannone, N., Evans, J.C.E., Strachan, R. & Guglielmin, M. 2006. Interactions between climate, vegetation and the active layer in soils at two Maritime Antarctic sites. Antarctic Science, 18, 10.1017/S095410200600037X.CrossRefGoogle Scholar
Conovitz, P.A., MacDonald, L.H. & McKnight, D.M. 2006. Spatial and temporal active layer dynamics along three glacial meltwater streams in the McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 38, 4253.Google Scholar
De Pablo, M.A., Blanco, J.J., Molina, A., Ramos, M., Quesada, A. & Vieira, G. 2013. Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica. Antarctic Science, 25, 10.1017/S0954102012000818.CrossRefGoogle Scholar
Farbrot, H., Isaksen, K., Etzelmüller, B. & Gisnås, K. 2013. Ground thermal regime and permafrost distribution under changing climate in Northern Norway. Permafrost and Periglacial Processes, 24, 10.1002/ppp.1763.Google Scholar
Guglielmin, M. 2004. Observations on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change. Global and Planetary Change, 40, 10.1016/S0921-8181(03)00106-1.Google Scholar
Guglielmin, M. 2006. Ground surface temperature (GST), active layer and permafrost monitoring in Continental Antarctica. Permafrost and Periglacial Processes, 17, 10.1002/ppp.553.Google Scholar
Guglielmin, M. & Cannone, N. 2012. A permafrost warming in a cooling Antarctica? Climatic Change, 111, 10.1007/s10584-011-0137-2.CrossRefGoogle Scholar
Guglielmin, M., Balks, M. & Paetzold, R. 2003. Towards an Antarctic active layer and permafrost monitoring network. In Phillips, M., Springman, S. & Arenson, L., eds. Proceedings of the 8th International Conference on Permafrost. Zurich: Balkema, 337341.Google Scholar
Guglielmin, M., Fratte, M.D. & Cannone, N. 2014b. Permafrost warming and vegetation changes in continental Antarctica. Environmental Research Letters, 9, 10.1088/1748-9326/9/4/045001.Google Scholar
Guglielmin, M., Worland, M.R. & Cannone, N. 2012. Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of Maritime Antarctica, Signy Island. Geomorphology, 155, 10.1016/j.geomorph.2011.12.016.Google Scholar
Guglielmin, M., Balks, M.R., Adlam, L.S. & Baio, F. 2011. Permafrost thermal regime from two 30-m deep boreholes in southern Victoria Land, Antarctica. Permafrost and Periglacial Processes, 22, 10.1002/ppp.715.Google Scholar
Guglielmin, M., Worland, M.R., Baio, F. & Convey, P. 2014a. Permafrost and snow monitoring at Rothera Point (Adelaide Island, Maritime Antarctica): implications for rock weathering in cryotic conditions. Geomorphology, 225, 10.1016/j.geomorph.2014.03.051.Google Scholar
Hansen, C.D., Meiklejohn, K.I., Nel, W., Loubser, M.J. & van der Merwe, B.J. 2013. Aspect-controlled weathering observed on a blockfield in Dronning Maud Land, Antarctica. Geografiska Annaler - Physical Geography, 95A, 10.1111/geoa.12025.Google Scholar
Harris, S.A. & Pedersen, D.E. 1998. Thermal regimes beneath coarse blocky materials. Permafrost and Periglacial Processes, 9, 107120.3.0.CO;2-G>CrossRefGoogle Scholar
Ishikawa, M. 2003. Thermal regimes at the snow–ground interface and their implications for permafrost investigation. Geomorphology, 52, 105120.Google Scholar
Kärkäs, E. 2004. Meteorological conditions of the Basen Nunatak in western Dronning Maud Land, Antarctica, during the years 1989–2001. Geophysica, 40, 3952.Google Scholar
King, J.C. & Turner, J. 1997. Antarctic meteorology and climatology. Cambridge: Cambridge University Press, 422 pp.Google Scholar
Marchenko, S. & Etzelmüller, B. 2013. Permafrost: formation and distribution, thermal and mechanical properties. In Giardino, R. & Harbor, J., eds. Treatise on geomorphology. London: Elsevier, 202222.Google Scholar
Marshall, D.J., Crafford, J.E., Krynauw, J.R., Drummond, A.E. & Newton, I.P. 1995. The biology, physico-chemistry and geology of a nunatak pond at Valterkultun, western Dronning Maud Land, Antarctica. South African Journal of Antarctic Research, 25, 916.Google Scholar
Reijmer, C.H. & van den Broeke, M.R. 2001. Moisture source of precipitation in western Dronning Maud Land, Antarctica. Antarctic Science, 13, 210220.Google Scholar
Remund, J., Müller, S., Kunz, S., Hugenin-Landl, B., Schmid, C. & Schilter, C. 2014. Meteonorm handbook part I : software. Version 7. Bern: Meteotest, 155.Google Scholar
Seybold, C.A., Balks, M.R. & Harms, D.S. 2010. Characterization of active layer water contents in the McMurdo Sound region, Antarctica. Antarctic Science, 22, 10.1017/S0954102010000696.CrossRefGoogle Scholar
Turner, J., Bindschadler, R.A., Convey, P., Di Princo, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A. & Summerhayes, C.P. 2009. Antarctic climate change and the environment. Cambridge: Scientific Committee for Antarctic Research, 526 pp.Google Scholar
Van den Broeke, M.R. 2000. The semi-annual oscillation and Antarctic climate. Part 4: a note on sea ice over in the Amundsen and Bellingshausen seas. International Journal of Climatology, 20, 455462.3.0.CO;2-M>CrossRefGoogle Scholar
Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A.A., Boelhouwers, J., Cannone, N., Ganzert, L., Gilichinsky, D.A., Gotyachkin, S., Lopez-Martinez, J., Meiklejohn, I., Raffi, R., Ramos, M., Schaefer, C., Serrano, E., Simas, F., Sletten, R. & Wagner, D. 2010. Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the International Polar Year 2007–2009. Permafrost and Periglacial Processes, 21, 10.1002/ppp.685.Google Scholar
Wilhelm, K.R., Bockheim, J.G. & Kung, S. 2015. Active layer thickness prediction on the western Antarctic Peninsula. Permafrost and Periglacial Processes, 26, 10.1002/ppp.1845.Google Scholar
Zhang, T.J. 2005. Influence of seasonal snow cover on the ground thermal regime: an overview. Reviews in Geophysics, 43, 10.1029/2004RG000157.Google Scholar