Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T01:48:24.107Z Has data issue: false hasContentIssue false

Structure of planktonic microbial communities along a trophic gradient in lakes of Byers Peninsula, South Shetland Islands

Published online by Cambridge University Press:  20 March 2013

Carlos Rochera
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain
Manuel Toro
Affiliation:
Centro de Estudios Hidrográficos (CEDEX), Paseo Bajo Virgen del Puerto, 3, 28005 Madrid, Spain
Eugenio Rico
Affiliation:
Departamento de Ecología, Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
Eduardo Fernández-Valiente
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
Juan Antonio Villaescusa
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain
Antonio Picazo
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain
Antonio Quesada
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
Antonio Camacho*
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain

Abstract

A systematic limnological survey of water bodies of Byers Peninsula (Livingston Island, South Shetland Islands) was carried out during the summer of 2001/02. Abundances of microbial plankton were determined which allowed a delineation of the pelagic food web structure. We also report the nutrient status of these lakes. We demonstrate the occurrence of a trophic gradient that extended from upland lakes (oligotrophic) to the coastal ones (eutrophic). The study shows that a lake's morphology regulates the relative importance of the pelagic and benthic habitats, whereas nutrient loads mainly determine its trophic status. Yet, some of the variability observed could be also a legacy of the landscape. Photosynthetic pigments analyses by high-performance liquid chromatography of the lake waters revealed a major occurrence of chlorophytes, chrysophytes and diatoms. The chlorophyll a concentrations in lakes in the central plateau were consistently lower (< 2.5 μg l-1) than coastal sites, which were one order of magnitude higher. Numbers of both bacterioplankton and autotrophic picoplankton also increased from inland to coastal sites. However, the relative role of autotrophic picoplankton in the total phytoplankton assemblage decreased with the increase in nutrients loads. Our results show that the trophic status clearly plays a significant role in structuring the pelagic communities of these lakes despite climatic constraints.

Type
Research Articles
Copyright
Copyright © Antarctic Science Ltd 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agawin, N.S.R., Duarte, C.M.Agustí, S. 2000. Nutrient and temperature control of the contribution of picoplankton and phytoplankton biomass and production. Limnology and Oceanography, 45, 591600.CrossRefGoogle Scholar
Bell, E.M.Laybourn-Parry, J. 1999. Annual plankton dynamics in an Antarctic saline lake. Freshwater Biology, 41, 507519.CrossRefGoogle Scholar
Bell, E.M.Laybourn-Parry, J. 2003. Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola. Journal of Phycology, 39, 644649.CrossRefGoogle Scholar
Bell, T.Kalff, J. 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography, 46, 12431248.CrossRefGoogle Scholar
Björck, S., Håkansson, H., Olsson, S., Barnekow, L.Janssens, J. 1993. Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. Journal of Paleolimnology, 8, 233272.CrossRefGoogle Scholar
Björck, S., Hjort, C., Ingólfsson, Ó., Zale, R.Ising, J. 1996. Holocene deglaciation chronology from lake sediments. In López-Martínez, J., Thomson, M.R.A., Thomson, J.W., eds. Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP Series, Sheet 5-A. Cambridge: British Antarctic Survey, 4951.Google Scholar
Borghini, F., Colacevich, A., Caruso, T.Bargagli, R. 2008. Temporal variation in the water chemistry of northern Victoria Land lakes (Antarctica). Aquatic Science, 70, 134141.CrossRefGoogle Scholar
Butler, H.G. 1999. Seasonal dynamics of the planktonic microbial community in a Maritime Antarctic lake undergoing eutrophication. Journal of Plankton Research, 21, 23932419.CrossRefGoogle Scholar
Camacho, A. 2006. Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the Maritime Antarctica and sub-Antarctic islands. Reviews in Environmental Science and Biotechnology, 5, 167185.CrossRefGoogle Scholar
Camacho, A., Picazo, A., Miracle, M.R.Vicente, E. 2003. Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Archives of Hydrobiology (Supplement Algological Studies), 109, 171184.Google Scholar
Engstrom, D.R., Fritz, S.C., Almendinger, J.E.Juggins, S. 2000. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature, 408, 161166.CrossRefGoogle ScholarPubMed
Fernández-Valiente, E., Camacho, A., Rochera, C., Rico, E., Vincent, W.F.Quesada, A. 2007. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 59, 377385.CrossRefGoogle Scholar
Fisher, M.M., Klug, J.L., Lauster, G., Newton, M.Triplett, E.W. 2000. Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microbial Ecology, 40, 125138.CrossRefGoogle ScholarPubMed
Forsström, L., Sorvari, S., Korhola, A.Rautio, M. 2005. Seasonality of phytoplankton in subarctic Lake Saanajärvi in NW Finnish Lapland. Polar Biology, 28, 846861.CrossRefGoogle Scholar
Izaguirre, I., Allende, L.Marinone, M.C. 2003. Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). Journal of Plankton Research, 25, 11251141.CrossRefGoogle Scholar
Izaguirre, I., Mataloni, G., Allende, L.Vinocur, A. 2001. Summer fluctuations of microbial planktonic communities in a eutrophic lake - Cierva Point, Antarctica. Journal of Plankton Research, 23, 10951109.CrossRefGoogle Scholar
Jackson, D.A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 22042214.CrossRefGoogle Scholar
Jones, V.J., Juggins, S.Ellis-Evans, J.C. 1993. The relationship between water chemistry and surface sediment diatom assemblages in Maritime Antarctic lakes. Antarctic Science, 5, 339348.CrossRefGoogle Scholar
Lagus, A., Suomela, J., Weithoff, G., Heikkila, K., Helminen, H.Sipura, J. 2004. Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. Journal of Plankton Research, 26, 779798.CrossRefGoogle Scholar
Laybourn-Parry, J., Ellis-Evans, J.C.Butler, H. 1996. Microbial dynamics during the summer ice-loss phase in Maritime Antarctic lakes. Journal of Plankton Research, 18, 495511.CrossRefGoogle Scholar
Lovejoy, C., Vincent, W.F., Bonilla, S., Roy, S., Martineau, M.-J., Terrado, R., Potvin, M., Massana, R.Pedrós-Alió, C. 2007. Distribution, phylogeny, and growth of cold adapted picoprasinophytes in Arctic seas. Journal of Phycology, 43, 7889.CrossRefGoogle Scholar
Pace, M.L.Cole, J.J. 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecology, 28, 181193.CrossRefGoogle ScholarPubMed
Priscu, J.C., Wolf, C.F., Takacs, C.D., Fritsen, C.H., Laybourn-Parry, J., Roberts, E.C.Berry Lyons, W. 1999. Carbon transformations in the water column of a perennially ice-covered Antarctic lake. Bioscience, 49, 9971008.CrossRefGoogle Scholar
Raven, J.A. 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology, 12, 503513.CrossRefGoogle Scholar
Rochera, C., Justel, A., Fernández-Valiente, E., Bañón, M., Rico, E., Toro, M., Camacho, A.Quesada, A. 2010. Interannual meteorological variability and its effects on a lake from Maritime Antarctica. Polar Biology, 33, 16151628.CrossRefGoogle Scholar
Säwström, C., Lisle, J., Anesio, A.M., Priscu, J.C.Laybourn-Parry, J. 2008. Bacteriophage in polar inland waters. Extremophiles, 12, 167175.CrossRefGoogle ScholarPubMed
Sigee, D.C. 2005. Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. New York: John Wiley & Sons, 544 pp.Google Scholar
Teubner, K., Crosbie, N.D., Donabaum, K., Kabas, W., Kirschner, A.K.T., Pfister, G., Salbrechter, M.Dokulil, M.T. 2003. Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnology and Oceanography, 48, 11411149.CrossRefGoogle Scholar
Toro, M., Camacho, A., Rochera, C., Rico, E., Bañón, M., Fernández-Valiente, E., Marco, E., Justel, A., Avendaño, M.C., Ariosa, Y., Vincent, W.F.Quesada, A. 2007. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctica. Polar Biology, 30, 635649.CrossRefGoogle Scholar
Toro, M., Granados, I., Pla, S., Giralt, S., Antoniades, D., Galán, L., Martínez Cortizas, A., Lim, H.S.Appleby, P.G. 2013. Chronostratigraphy of the sedimentary record of Limnopolar Lake, Byers Peninsula, Livingston Island, Antarctica. Antarctic Science, 25, 10.1017/S0954102012000788.CrossRefGoogle Scholar
Velázquez, D., Rochera, C., Camacho, A.Quesada, A. 2011. Temperature effects on carbon and nitrogen metabolism in some Maritime Antarctic freshwater phototrophic communities. Polar Biology, 34, 10451055.CrossRefGoogle Scholar
Villaescusa, J.A., Casamayor, E.O., Rochera, C., Velázquez, D., Chicote, A., Quesada, A.Camacho, A. 2010. A close link between bacterial community composition and environmental heterogeneity in Maritime Antarctic lakes. International Microbiology, 13, 6777.Google ScholarPubMed
Vörös, L. 1991. Importance of picoplankton in Hungarian shallow lakes. Verhandlungen des Internationalen Verein Limnologie, 24, 984988.Google Scholar
Wehr, J.D. 2008. Nutrient and grazer-mediated effects on picoplankton and size structure in phytoplankton communities. International Review of Hydrobiology, 76, 643656.CrossRefGoogle Scholar
Wehr, J.D., Le, J.Campbell, L. 1994. Does microbial biomass affect pelagic ecosystem efficiency? An experimental study. Microbial Ecology, 27, 117.CrossRefGoogle ScholarPubMed