Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T12:11:10.843Z Has data issue: false hasContentIssue false

Inhabitant or visitor? Unexpected finding of Aglaophenia (Cnidaria, Hydrozoa) in Antarctic waters

Published online by Cambridge University Press:  10 March 2017

Joan J. Soto Àngel*
Affiliation:
Grup de Biodiversitat i Evolució de Cnidaris, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, SpainLaboratori de Biologia Marina, Departament de Zoologia, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, València, Spain
Álvaro L. Peña Cantero
Affiliation:
Grup de Biodiversitat i Evolució de Cnidaris, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, SpainLaboratori de Biologia Marina, Departament de Zoologia, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, València, Spain

Abstract

Benthic hydrozoans are one of the most speciose and characteristic taxa from the Antarctic region, with a high number of endemic species, but diversity at the genus level is low and some families with world wide distribution are unrepresented. This is the case of the family Aglaopheniidae. A new species to science of the genus Aglaophenia Lamouroux has been found in the eastern end of the Weddell Sea, at depths of 65–116 m, within the material obtained by the German Antarctic expedition ANT XV/3. This finding constitutes a new record for the Weddell Sea fauna, the first evidence of the genus for the Polar Regions, and even the family Aglaopheniidae from Antarctic waters. The material has been accurately examined and described. Literature concerning the species of Aglaophenia from the sub-Antarctic and other close areas has been reviewed and, as a result, a checklist of 20 species, with their corresponding distribution, is given. The material examined does not agree with any of the species and therefore it is described as a new species. Some possible scenarios for the presence of an aglaopheniid in Antarctic waters are discussed (e.g. alien species, relict, global climate change, microhabitat).

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansín Agís, J.A., Ramil, F. & Vervoort, W. 2001. Atlantic Leptolida (Hydrozoa, Cnidaria) of the families Aglaopheniidae, Halopterididae, Kirchenpaueriidae and Plumulariidae collected during the CANCAP and Mauritania-II expeditions of the National Museum of Natural History, Leiden, The Netherlands. Zoologische Verhandelingen, 333, 1268.Google Scholar
Arntz, W.E., Brey, T. & Gallardo, V.A. 1994. Antarctic zoobenthos. Oceanography and Marine Biology - Annual Review, 32, 241304.Google Scholar
Aronson, R.B., Thatje, S., Clarke, A., Peck, L.S., Blake, D.B., Wilga, C.D. & Seibel, B.A. 2007. Climate change and invasibility of the Antarctic benthos. Annual Review of Ecology Evolution and Systematics, 38, 129154.Google Scholar
Barnes, D.K.A. & Conlan, K.E. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society - Biological Sciences, B362, 1138.Google Scholar
Barnes, D.K.A. & Kuklinski, P. 2010. Bryozoans of the Weddell Sea continental shelf, slope and abyss: did marine life colonize the Antarctic shelf from deep water, outlying islands or in situ refugia following glaciations? Journal of Biogeography, 37, 16481656.Google Scholar
Barnes, D.K.A., Hodgson, D.A., Convey, P., Allen, C.S. & Clarke, A. 2006. Incursion and excursion of Antarctic biota: past, present and future. Global Ecology and Biogeography, 15, 121142.Google Scholar
Basher, Z. & Costello, M.J. 2016. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ, 4, 10.7717/peerj.1713.CrossRefGoogle ScholarPubMed
Bouillon, J., Gravili, C., Pagès, F., Gili, J.-M. & Boero, F. 2006. An introduction to Hydrozoa. Mémoires Du Muséum National d’Histoire Naturelle, 194, 1591.Google Scholar
COMNAP. 2016. Antarctic facilities list 27th Jul 2016. Christchurch: Council of Managers of National Antarctic Programs. Available at: https://www.comnap.aq/Information/SitePages/Home.aspx.Google Scholar
Eleftheriou, A. & Moore, D.C. 2005. Chapter 5: Macrofauna techniques. In Eleftheriou, A. & McIntyre, A., eds. Methods for the study of marine benthos. Oxford: Blackwell Science, 437 pp.CrossRefGoogle Scholar
Galea, H.R. 2015. Hydroids (Cnidaria: Hydrozoa) from Tristan da Cunha and St Helena. Marine Biodiversity Records, 8, 10.1017/S1755267215001256.Google Scholar
Galil, B.S., Gershwin, L.A., Douek, J. & Rinkevich, B. 2010. Marivagia stellata gen. et sp. nov. (Scyphozoa: Rhizostomeae: Cepheidae), another alien jellyfish from the Mediterranean coast of Israel. Aquatic Invasions, 5, 331340.Google Scholar
García Raso, J.E., Manjón-Cabeza, M.E., Ramos, A. & Olaso, I. 2005. New record of Lithodidae (Crustacea Decapoda, Anomura) from the Antarctic (Bellingshausen Sea). Polar Biology, 28, 642646.CrossRefGoogle Scholar
González-Duarte, M.M., Megina, C. & Bethencourt, M. 2013. Sertularia marginata (Cnidaria, Hydrozoa) in the Mediterranean: an alien species in expansion? Mediterranean Marine Science, 14, 384389.Google Scholar
González-Duarte, M.M., Megina, C. & Piraino, S. 2014. Looking for long-term changes in hydroid assemblages (Cnidaria, Hydrozoa) in Alboran Sea (south-western Mediterranean): a proposal of a monitoring point for the global warming. Helgoland Marine Research, 68, 511521.Google Scholar
Gravili, C., D’Ambrosio, P., Di Camillo, C.G., Renna, G., Bouillon, J. & Boero, F. 2008. Clytia hummelincki (Hydroidomedusae: Leptomedusae) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 88, 15471553.Google Scholar
Griffiths, H.J., Whittle, R.J., Roberts, S.J., Belchier, M. & Linse, K. 2013. Antarctic crabs: invasion or endurance? PLoS ONE, 8, 10.1371/journal.pone.0066981.Google Scholar
Gutt, J. & Piepenburg, D. 2003. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Marine Ecology Progress Series, 253, 7783.CrossRefGoogle Scholar
Gutt, J., Starmans, A. & Dieckmann, G. 1996. Impact of iceberg scouring on polar benthic habitats. Marine Ecology Progress Series, 137, 311316.Google Scholar
Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution, 15, 5661.Google Scholar
Kidawa, A. & Janecki, T. 2011. Antarctic benthic fauna in the global climate change. Papers on Global Change, 18, 7186.Google Scholar
Macpherson, E. 2004. A new species and new records of lithodid crabs (Crustacea: Decapoda: Lithodidae) from the Crozet and Kerguelen islands area (sub-Antarctic). Polar Biology, 27, 418422.Google Scholar
Meredith, M.P. & King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, 10.1029/2005GL024042.Google Scholar
Moore, J.K., Abbott, M.R. & Richman, J.G. 1999. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. Journal of Geophysical Research - Oceans, 104, 30593073.Google Scholar
Morri, C., Puce, S., Bianchi, C.N., Bitar, G., Zibrowius, H. & Bavestrello, G. 2009. Hydroids (Cnidaria: Hydrozoa) from the Levant Sea (mainly Lebanon), with emphasis on alien species. Journal of the Marine Biological Association of the United Kingdom, 89, 4962.Google Scholar
Moura, C.J., Cunha, M.R., Porteiro, F.M. & Rogers, A.D. 2012. A molecular phylogenetic appraisal of the systematics of the Aglaopheniidae (Cnidaria: Hydrozoa, Leptothecata) from the north-east Atlantic and west Mediterranean. Zoological Journal of the Linnean Society, 164, 717727.Google Scholar
Nutting, G.G. 1900. American hydroids. Part I. The Plumularidae. Smithsonian Institution United States National Museum Special Bulletin, 4, 1285.Google Scholar
Peck, L.S., Convey, P. & Barnes, D.K.A. 2006. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 81, 75109.Google Scholar
Peña Cantero, A.L. 2004. How rich is the deep-sea Antarctic benthic hydroid fauna? Polar Biology, 27, 767774.Google Scholar
Peña Cantero, A.L. 2008. Benthic hydroids (Cnidaria, Hydrozoa) from the Spanish Antarctic expedition Bentart 95. Polar Biology, 31, 451464.Google Scholar
Picken, G.B. 1985. Marine habitats – benthos. In Bonner, W.N. & Walton, D.W.H., eds. Key environments: Antarctica. Oxford: Pergamon, 154172.Google Scholar
Piraino, S., Aglieri, G., Martell, L., Mazzoldi, C., Melli, V., Milisenda, G., Scorrano, S. & Boero, F. 2014. Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea. Zootaxa, 3794, 455468.Google Scholar
Postaire, B., Magalon, H., Bourmaud, C.A.-F., Gravier-Bonnet, N. & Bruggemann, J.H. 2016. Phylogenetic relationships within Aglaopheniidae (Cnidaria, Hydrozoa) reveal unexpected generic diversity. Zoologica Scripta, 45, 103114.Google Scholar
Potthoff, M., Johst, K. & Gutt, J. 2006. How to survive as a pioneer species in the Antarctic benthos: minimum dispersal distance as a function of lifetime and disturbance. Polar Biology, 29, 543551.Google Scholar
Puce, S., Bavestrello, G., Di Camillo, C.G. & Boero, F. 2009. Long-term changes in hydroid (Cnidaria, Hydrozoa) assemblages: effect of Mediterranean warming? Marine Ecology - An Evolutionary Perspective, 30, 313326.Google Scholar
Rogan-Finnemore, M. 2008. Non-native species in the Antarctic. Gateway Antarctica Special Publication Series, No. 0801, 1317.Google Scholar
Ronowicz, M., Kukliński, P. & Mapstone, G.M. 2015. Trends in the diversity, distribution and life history strategy of Arctic Hydrozoa (Cnidaria). PLoS ONE, 10, 10.1371/journal.pone.0120204.Google Scholar
Smale, D.A., Brown, K.M., Barnes, D.K.A., Fraser, K.P.P. & Clarke, A. 2008. Ice scour disturbance in Antarctic waters. Science, 321, 371.Google Scholar
Starikov, Y.V., Spirifonov, V.A., Naumov, A.D. & Zuev, Y.A. 2015. First record and potential for red king crab Paralithodes camtschaticus (Crustacea Decapoda Lithodidae) population establishment in the White Sea. Russian Journal of Biological Invasions, 6, 118128.Google Scholar
Stark, J.S., Kim, S.L. & Oliver, J.S. 2014. Anthropogenic disturbance and biodiversity of marine benthic communities in Antarctica: a regional comparison. PLoS ONE, 9, 10.1371/journal.pone.0098802.Google Scholar
Svoboda, A. & Cornelius, P.F.S. 1991. The European and Mediterranean species of Aglaophenia (Cnidaria: Hydrozoa). Zoologische Verhandelingen, 274, 172.Google Scholar
Thorpe, J.P., Ryland, J.S., Cornelius, P.F.S. & Beradmore, J.A. 1992. Genetic divergence between branched and unbranched forms of the thecate hydroid Aglaophenia pluma . Journal of the Marine Biological Association of the United Kingdom, 72, 887894.Google Scholar
Xavier, J.C., Barbosa, A., Agustí, S. & 48 others. 2013. Polar marine biology science in Portugal and Spain: recent advances and future perspectives. Journal of Sea Research, 83, 929.Google Scholar
Supplementary material: PDF

Soto Àngel and Peña Cantero supplementary material

Table

Download Soto Àngel and Peña Cantero supplementary material(PDF)
PDF 358.3 KB