Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T02:21:36.233Z Has data issue: false hasContentIssue false

CO2-C losses and carbon quality of selected Maritime Antarctic soils

Published online by Cambridge University Press:  03 October 2012

Juliana Vanir De Souza Carvalho
Affiliation:
Chemistry Department, Universidade do Estado de Minas Gerais, Av. Olegário Maciel 1427, 36500-000, Ubá, Minas Gerais, Brazil
Eduardo De Sá Mendonça*
Affiliation:
Department of Plant Production, Federal University of Espírito Santo, 29500-000, Alegre, ES, Brazil
Newton La Scala JR
Affiliation:
FCAV, Universidade Estadual Paulista, Via de Acesso Prof Paulo Donato Castellane s/n, 14884-900, Jaboticabal, SP, Brazil
César Reis
Affiliation:
Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, 36570-000, Viçosa, Minas Gerais, Brazil
Efrain Lázaro Reis
Affiliation:
Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, 36570-000, Viçosa, Minas Gerais, Brazil
Carlos E.G.R. Schaefer
Affiliation:
Visiting scholar, Scott Polar Research Institute, Lensfield Rd, Cambridge CB2 1ER, UK
*
*corresponding author: esmjplia@gmail.com

Abstract

Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151163.CrossRefGoogle Scholar
Beyer, L., White, D.M., Pingpank, K.Bölter, M. 2004. Composition and transformation of soil organic matter in cryosols and gelic histosols in coastal eastern Antarctica (Casey Station, Wilkes Land). In Kimble, J.,ed. Cryosols: permafrost affected soils. Berlin: Springer, 525557.CrossRefGoogle Scholar
Birkenmajer, K. 2002. Retreat of the Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. Bulletin of the Polish Academy of Sciences, Earth Sciences, 50, 1629.Google Scholar
Bölter, M. 1995. Distribution of bacterial numbers and biomass in soils and on plants from King George Island (Arctowski Station, Maritime Antarctica). Polar Biology, 15, 115124.CrossRefGoogle Scholar
Bölter, M., Blume, H.P.Kuhn, D. 1999. Soils and their microbiological properties from a transect from Cape Horn to the Antarctic Peninsula. Polar Bioscience, 12, 5467.Google Scholar
Bölter, M., Blume, H.P., Schneider, D.Beyer, L. 1997. Soil properties and distribution of invertebrates and bacteria from King George Island (Arctowski Station), Maritime Antarctic. Polar Biology, 18, 295304.Google Scholar
Boone, R.D., Nadelhoffer, K.J., Canary, J.D.Kaye, J.P. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570572.CrossRefGoogle Scholar
Bremner, J.M.Mulvaney, C.S. 1982. Nitrogen total. In Page, A.L.,ed. Methods of soil analysis: chemical and microbiological properties. Madison: American Society of Agronomy, 595624.Google Scholar
Campbell, I.B.Claridge, G.G.C. 1987. Antarctica: soils, weathering processes and environment. Amsterdam: Elsevier, 368 pp.Google Scholar
Carvalho, J.V.S., Mendonça, E.S., Barbosa, R.T., Reis, E.L., Seabra, P.N.Schaefer, C.E.G.R. 2010. Impact of expected global warming on C mineralization in Maritime Antarctic soils: results of laboratory experiments. Antarctic Science, 22, 485493.CrossRefGoogle Scholar
Chan, K.Y., Bowman, A.Oates, A. 2001. Oxidizable organic carbon fractions and soil quality changes in oxic paleustalf under different pasture leys. Soil Science, 166, 6167.CrossRefGoogle Scholar
Davidson, E.A., Janssens, I.A.Luo, Y. 2006. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154164.CrossRefGoogle Scholar
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 1997. Manual de métodos de análise de solo, 2nd ed. Rio de Janeiro: EMBRAPA, Centro Nacional de Pesquisa de Solos, 212 pp.Google Scholar
Epron, D., Farque, L., Lucot, E.Badot, P. 1999. Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Annals of Forest Science, 56, 221226.CrossRefGoogle Scholar
Fang, C., Moncrieff, J.B., Gholz, H.L.Clark, K.L. 1998. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil, 205, 135146.CrossRefGoogle Scholar
Ferreira, A.S., Camargo, F.A.O.Vidor, C. 1999. Utilização de microondas na avaliação da biomassa microbiana do solo. Revista Brasileira de Ciência do Solo, 23, 991996.CrossRefGoogle Scholar
Francelino, M.R., Schaefer, C.E.G.R., Simas, F.N.B., Fernandes Filho, E.I., Souza, J.J.L.Costa, L.M. 2011. Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena, 85, 194204.CrossRefGoogle Scholar
FUNARBE (Fundação Arthur Bernardes). 2007. SAEG: sistema para análises estatísticas, version 9.1. Viçosa, MG, Brazil: Federal University of Viçosa, CD-ROM.Google Scholar
Gershenson, A., Bader, N.E.Cheng, W. 2009. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 15, 176183.CrossRefGoogle Scholar
Hanson, P.J., O'Neill, E.G.Chambers, M.L.S. 2003. Soil respiration and litter decomposition. In Hanson, P.J. & Wullschleger, S.D., eds. North American temperate deciduous forest responses to changing precipitation regimes. New York: Springer, 163189.CrossRefGoogle Scholar
Hopkins, D.W., Sparrow, A.D., Gregorich, E.G., Elberling, B., Novis, P., Fraser, F., Scrimgeour, C., Dennis, P.G., Meier-Augenstein, M.Greenfield, L.G. 2009. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environmental Microbiology, 11, 597608.CrossRefGoogle ScholarPubMed
Islam, K.R.Weil, R.R. 1998. Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biology and Fertility of Soils, 27, 408416.CrossRefGoogle Scholar
Jingguo, W.Bakken, L.R. 1997. Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability. Soil Biology & Biochemistry, 29, 163170.CrossRefGoogle Scholar
Kuzyakov, Y.Gavrichkova, O. 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 14, 13652486.Google Scholar
Larionova, A.A., Yevdokimov, I.V.Bykhovets, S.S. 2007. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration. Biogeosciences Discussions, 4, 20072025.Google Scholar
La Scala, N., Mendonça, E.S., Carvalho, J.V.S., Panosso, A.R., Simas, F.N.B.Schaefer, C.E.G.R. 2010. Spatial and temporal variability in soil CO2-C emissions and relation to soil temperature at King George Island, Maritime Antarctica. Polar Science, 4, 479487.CrossRefGoogle Scholar
Lützow, M.V.Kögel-Knabner, I. 2009. Temperature sensitivity of soil organic matter decomposition - what do we know? Biology and Fertility of Soils, 46, 125.CrossRefGoogle Scholar
Marchiori, M. JrMelo, W.J. 1999. Carbono, carbono da biomassa microbiana e atividade enzimática em um solo sob mata natural, pastagem e cultura do algodoeiro. Revista Brasileira De Ciência Do Solo, 23, 257263.CrossRefGoogle Scholar
McCulley, R.L., Boutton, I.C.Archer, S.R. 2007. Soil respiration in a subtropical savanna parkland: response to water additions. Soil Science Society of America Journal, 71, 820828.CrossRefGoogle Scholar
Mendonça, E.S., La Scala, N. Jr, Panosso, A.R.P., Simas, F.N.B.Schaefer, C.E.G.R. 2011. Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island. Antarctic Science, 23, 2733.CrossRefGoogle Scholar
Michaelson, G.J., Dai, X.Y.Ping, C.L. 2004. Organic matter and bioactivity in cryosols of arctic Alaska. In Kimble, J.M.,ed. Cryosols: permafrost affected soils. Berlin: Springer, 463479.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Dias, L., Simas, F.N.B., Benites, V.Mendonça, E.S. 2006. Ornithogenic gelisols (cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal, 70, 13701376.CrossRefGoogle Scholar
Myrcha, A., Pietr, S.J.Tatur, A. 1983. The role of pygoscelid penguin rockeries in nutrient cycles at Admiralty Bay, King George Island. In Siegfried, W.R., Condy, P.R.&Laws, R.M.,eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 700 pp.Google Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C.Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645.CrossRefGoogle ScholarPubMed
Raich, J.W.Schlesinger, W.H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 8199.CrossRefGoogle Scholar
Reichstein, M., Kätterer, T., Andre, O., Ciais, P., Schulze, E-D., Cramer, W., Papale, D.Valentini, R. 2005. Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences Discussions, 2, 317321.CrossRefGoogle Scholar
Silva, I.R.Mendonça, E.S. 2007. Matéria orgânica do solo. In Novais, R.F., Alvarez, V., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B&Neves, J.C.L.,eds. Fertilidade do solo. Viçosa, MG, Brazil: Sociedade Brasileira de Ciência do Solo, 275374.Google Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Francelino, M.R., Fernandes Filho, E.I.Costa, L.M. 2008. Genesis, properties and classification of cryosols from Admiralty Bay, Maritime Antarctica. Geoderma, 144, 116122.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Guerra, M.B.B., Saunders, M.Gilkes, R.J. 2006. Clay-sized minerals in permafrost-affected soils (cryosols) from King George Island, Antarctica. Clays and Clay Minerals, 54, 723738.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V., Gomes, M.R.M.Costa, L.M. 2007. Ornithogenic cryosols from Maritime Antarctica: phosphatization as a soil forming process. Geoderma, 138, 191203.CrossRefGoogle Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C.Shindell, D.T. 2009. Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature, 457, 459463.CrossRefGoogle ScholarPubMed
Swift, R.S. 1996. Organic matter characterization. In Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T.&Sumner, M.E.,eds. Methods of soil analysis: chemical methods. Madison, WI: American Society of Agronomy, 10111020.Google Scholar
Tang, J.Baldocchi, D.B. 2005. Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183207.CrossRefGoogle Scholar
Vaughan, D.G., Marchall, G.J., Connolley, W.M., King, J.C.Mulvaney, R. 2001. Devil in the detail. Science, 293, 17771779.CrossRefGoogle ScholarPubMed
Yeomans, J.C.Bremner, J.M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19, 14671476.CrossRefGoogle Scholar
Yuste, J.C., Baldocchi, D.D., Gershenson, A., Goldstein, A., Misson, L.Wong, S. 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 20182035.CrossRefGoogle Scholar