Hostname: page-component-7d8f8d645b-xs5cw Total loading time: 0 Render date: 2023-05-29T02:39:43.369Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Shape, condition and diet of the pike icefish Champsocephalus esox (Teleostei: Channichthyidae): evidence of phenotypic plasticity?

Published online by Cambridge University Press:  03 September 2020

Mauricio F. Landaeta*
Laboratorio de Ictioplancton (LABITI), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Valparaíso, Chile Centro de Observación Marino para Estudios de Impacto del Ambiente Costero (COSTA-R), Universidad de Valparaíso, Valparaíso, Chile
Ariel Villegas
Laboratorio de Ictioplancton (LABITI), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Valparaíso, Chile
Mathias Hüne
Fundación Ictiológica, Santiago, Chile Centro de Investigación para la Conservación de los Ecosistemas Australes (ICEA), Punta Arenas, Chile


The shape (derived from landmark-based geometric morphometrics), condition (Fulton index) and diet (determined through gut content analysis) were described for the pike icefish Champsocephalus esox (Channichthyidae) from Última Esperanza sound, south-west Patagonia, Chile. Based on the length-weight relationship, females were heavier at length than males. Nevertheless, the Fulton index was similar between males and females. The morphospace of C. esox showed high intraspecific variability in the dorsoventral position of the tip of the snout, anus and the ventral insertion of the pectoral fin, as well as the anteroposterior position of the premaxilla, opercle and anus. This indicates the existence of phenotypic plasticity, leading to specimens with larger jaws and heads but shorter trunks, or specimens with shorter jaws and heads but larger trunks. This phenotypic plasticity was independent of size and sex. The feeding incidence was similar between sexes (34.1% and 47.2% for males and females, respectively). Diets consisted of only fish, small notothenioids of the genus Patagonotothen (P. tessellata, P. cornucola and P. sima), showing similarities between males and females. Finally, C. esox is the second notothenioid species, and the first outside of Antarctica, to display phenotypic plasticity in its body shape.

Biological Sciences
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Barrera-Oro, E., Eastman, J.T. & Moreira, E. 2012. Phenotypic plasticity in the Antarctic nototheniid fish Trematomus newnesi: a guide to the identification of typical, large mouth and intermediate morphs. Polar Biology, 35, 10.1007/s00300-011-1152-5.CrossRefGoogle Scholar
Bookstein, F.L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge, UK: Cambridge University Press, 456 pp.Google Scholar
Calvo, J., Morriconi, E. & Rae, G.A. 1999. Reproductive biology of the icefish Champsocephalus esox (Günther, 1861) (Channichthyidae). Antarctic Science, 11, 10.1017/s0954102099000206.CrossRefGoogle Scholar
Eastman, J.T. 1999. Aspects of the biology of the biology of the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) in the Ross Sea, Antarctica. Polar Biology, 21, 194196.CrossRefGoogle Scholar
Eastman, J.T. 2017. Bathymetric distributions of notothenioid fishes. Polar Biology, 40, 10.1007/s00300-017-2128-x.CrossRefGoogle Scholar
Eastman, J.T. 2019. An analysis of maximum body size and designation of size categories for notothenioid fishes. Polar Biology, 42, 10.1007/s00300-019-02502-7.CrossRefGoogle Scholar
Eastman, J.T. & Barrera-Oro, E.R. 2010. Buoyancy studies of three morphs of the Antarctic fish Trematomus newnesi (Nototheniidae) from the South Shetland Islands. Polar Biology, 33, 823831.CrossRefGoogle Scholar
Eastman, J.T. & DeVries, A.L. 1997. Biology and phenotypic plasticity of the Antarctic nototheniid fish Trematomus newnesi in McMurdo Sound. Antarctic Science, 9, 2735.CrossRefGoogle Scholar
Ferrando, S., Castellano, L., Gallus, L., Ghigliotti, L., Masini, M.A., Pisano, E. & Vacchi, M. 2014. A demonstration of nesting in two Antarctic icefish (genus Chionodraco) using a fin dimorphism analysis and ex situ videos. PLoS One, 9, 10.1371/journal.pone.0090512.CrossRefGoogle ScholarPubMed
Flores, H., Kock, K.-H., Wilhelms, S. & Jones, C.D. 2004. Diet of two icefish species from the South Shetland Islands and Elephant Island, Champsocephalus gunnari and Chaenocephalus aceratus. Polar Biology, 27, 10.1007/s00300-003-0570-4.CrossRefGoogle Scholar
Gerasimchook, V.V. 1989. On the sexual dimorphism of white-blooded fishes Chaenodraco wilsoni and Chionodraco hamatus (Channichthyidae, Perciformes). Zoologicheskii Zhurnal, 68, 142146.Google Scholar
Guðbrandsson, J., Franzdóttir, S.R., Kristjánsson, B.K., Ahi, E.P., Maier, V.H., Kapralova, K.H., et al. 2018. Differential gene expression during early development in recently evolved and sympatric Arctic charr morphs. PeerJ, 6, 10.7717/peerj.4345.CrossRefGoogle ScholarPubMed
Hüne, M., Davis, E., Murcia, S., Gutiérrez, D. & Haro, D. 2018. Trophic relationships of a subtidal fish assemblage in the Francisco Coloane Coastal Marine Protected Area, southern Chilean Patagonia. Polar Research, 37, 10.1080/17518369.2018.1435107.CrossRefGoogle Scholar
Hyslop, E.J. 1980. Stomach content analysis - a review of methods and their application. Journal of Fish Biology, 17, 10.1111/j.1095-8649.1980.tb02775.x.CrossRefGoogle Scholar
Isla, M.S. 1993. Feeding habits of Champsocephalus esox (Pisces, Channichthyidae) from Beagle Channel, Argentina. Naturalia Patagonica, 1, 8592.Google Scholar
Iwami, T. & Kock, K.-H. 1990. Channichthyidae. In Gon, O. & Heemstra, P., eds. Fishes of Southern Ocean. Grahamstown: J.L.B. Smith Institute of Ichthyology, 381399.Google Scholar
Klingenberg, C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 10.1111/j.1755-0998.2010.02924.x.CrossRefGoogle ScholarPubMed
Klingenberg, C.P. 2013. Visualization in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix, 24, 10.4404/hystrix-24.1-7691.Google Scholar
Kock, K-H. 2005a. Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I. Polar Biology, 28, 10.1007/s00300-005-0019-z.Google Scholar
Kock, K-H. 2005b. Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part II. Polar Biology, 28, 10.1007/s00300-005-0020-6.Google Scholar
Kock, K-H. & Jones, C.D. 2002. The biology of the icefish Cryodraco antarcticus Dollo, 1990 (Pisces, Channichthyidae) in the southern Scotia Arc (Antarctica). Polar Biology, 25, 10.1007/s00300-002-0357-z.CrossRefGoogle Scholar
Kock, K-H., Gröger, J. & Jones, C.D. 2013. Interannual variability in the feeding of ice fish (Notothenioidei, Channichthyidae) in the southern Scotia Arc and the Antarctic Peninsula region (CCAMLR Subareas 48.1 and 48.2). Polar Biology, 36, 10.1007/s00300-013-1363-z.CrossRefGoogle Scholar
La Mesa, M., Catalano, B. & Greco, S. 2011. Larval feeding of Chionodraco hamatus (Pisces, Channichthyidae) in the Ross Sea and its relation to environmental conditions. Polar Biology, 34, 10.1007/s00300-010-0866-0.CrossRefGoogle Scholar
Loy, A., Mariani, L., Bertelleti, M. & Tunesi, L. 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded sea bream, Diplodus vulgaris (Perciformes, Sparidae). Journal of Morphology, 237, 137146.3.0.CO;2-Z>CrossRefGoogle Scholar
Mayr, E. & Ashlock, P.D. 1991. Principles of systematic zoology. New York: McGraw-Hill, 475 pp.Google Scholar
Moreno, C.A. & Jara, H.F. 1984. Ecological studies on fish fauna associated with Macrocystis pyrifera belts in the south of Fueguian islands, Chile. Marine Ecology Progress Series, 15, 10.3354/meps015099.CrossRefGoogle Scholar
Parsons, K.J., Sheets, H.D., Skúlason, S. & Ferguson, M.M. 2011. Phenotypic plasticity, heterochrony and ontogenetic repatterning during juvenile development of divergent Arctic charr (Salvelinus alpinus). Journal of Evolutionary Biology, 24, 16401652.CrossRefGoogle Scholar
Piacentino, G.L.M. & Barrera-Oro, E. 2009. Phenotypic plasticity in the Antarctic fish Trematomus newnesi (Nototheniidae) from the South Shetland Islands. Polar Biology, 32, 10.1007/s00300-009-0651-0.CrossRefGoogle Scholar
Reid, W.D.K., Clarke, S., Collins, M.A. & Belchier, M. 2007. Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biology, 30, 10.1007/s00300-007-0313-z.CrossRefGoogle Scholar
Robinson, B.W. & Wilson, D.S. 1994. Character release and displacement in fishes: a neglected literature. American Naturalist, 144, 596627.CrossRefGoogle Scholar
Rohlf, F.J. & Slice, D.E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 4059.CrossRefGoogle Scholar
Skúlason, S., Parsons, K.J., Svanbäck, R., Räsänen, K., Ferguson, M.M., Adams, C.E., et al. 2019. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biological Reviews, 94, 10.1111/brv.12534.CrossRefGoogle ScholarPubMed
Thomas, S.M., Harrod, C., Hayden, B., Malinen, T. & Kahilainen, K.K. 2017. Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator. Scientific Reports, 7, 10.1038/s41598-017-08263-9.CrossRefGoogle Scholar
Voskoboinikova, O.S. 1997. Osteological development of the Channichthyidae (Teleostei: Notothenioidei). Cybium, 21, 369379.Google Scholar
Zavala-Muñoz, F., Landaeta, M.F., Bernal-Durán, V., Herrera, G.A. & Brown, D.I. 2016. Larval development and shape variation of the kelpfish Myxodes viridis (Teleostei: Clinidae). Scientia Marina, 80, 10.3989/scimar.04263.24C.Google Scholar