Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-mpxzb Total loading time: 0.207 Render date: 2023-01-30T02:57:43.335Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Optimal design of a bonus-malus system: linear relativities revisited

Published online by Cambridge University Press:  20 October 2015

Chong It Tan*
Affiliation:
Research School of Finance, Actuarial Studies & Statistics, Australian National University, Australia
*
*Correspondence to: Chong It Tan, Research School of Finance, Actuarial Studies & Statistics, Australian National University, Canberra, ACT 0200, Australia. Tel: +612 6125 5458; Fax: +612 6125 0087; E-mail: chongit.tan@anu.edu.au

Abstract

In this paper, we revisit the determination of optimal relativities under the linear form of relativities that is more viable in designing a commercial bonus-malus system. We derive the analytical formulae for the optimal linear relativities subject to a financial balanced inequality constraint. We also numerically investigate the impact of different a priori risk classification towards the effectiveness of transition rules. Our results show that the a priori risk segmentation is not a sensitive factor for the effectiveness of transition rules. Furthermore, relative to the general relativities, we find that the restriction of linear relativities only produces a small amount of deterioration towards the numerical value of the optimised objective function.

Type
Papers
Copyright
© Institute and Faculty of Actuaries 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baione, F., Levantesi, S. & Menzieti, M. (2002). The development of an optimal bonus-malus system in a competitive market. ASTIN Bulletin, 32(1), 159170.CrossRefGoogle Scholar
Coene, G. & Doray, L.G. (1996). A financially balanced bonus-malus system. ASTIN Bulletin, 26(1), 107116.CrossRefGoogle Scholar
De Jong, P. & Heller, G.Z. (2008). Generalized Linear Models for Insurance Data. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Denuit, M., Maréchal, X., Pitrebois, S. & Walhin, J.-F. (2007). Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems. John Wiley & Sons, Chichester.CrossRefGoogle Scholar
Dionne, G. & Vanasse, C. (1989). A generalization of actuarial automobile insurance rating models: the negative binomial distribution with a regression component. ASTIN Bulletin, 19(2), 199212.CrossRefGoogle Scholar
Gilde, V. & Sundt, B. (1989). On bonus systems with credibility scales. Scandinavian Actuarial Journal, 1989(1), 1322.CrossRefGoogle Scholar
Lemaire, J. (1995). Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publishers, Boston, MA.CrossRefGoogle Scholar
Lemaire, J., Park, S. & Wang, K. (2015). The impact of covariates on a bonus-malus system: an application of Taylor’s model. European Actuarial Journal, 5(1), 110.CrossRefGoogle Scholar
McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models, 2nd ed. Chapman and Hall, London.CrossRefGoogle Scholar
Norberg, R. (1976). A credibility theory for automobile bonus system. Scandinavian Actuarial Journal, 1976(2), 92107.CrossRefGoogle Scholar
Pitrebois, S., Denuit, M. & Walhin, J.-F. (2003). Setting a bonus-malus scale in the presence of other rating factors: Taylor’s work revisited. ASTIN Bulletin, 33(2), 419436.CrossRefGoogle Scholar
Pitrebois, S., Denuit, M. & Walhin, J.-F. (2004). Bonus-malus scales in segmented tariffs: Gilde & Sundt’s work revisited. Australian Actuarial Journal, 10(1), 107125.Google Scholar
Tan, C.I., Li, J., Li, J.S.-H. & Balasooriya, U. (2015). Optimal relativities and transition rules of a bonus-malus system. Insurance: Mathematics and Economics, 61, 255263.Google Scholar
Taylor, G. (1997). Setting a bonus-malus scale in the presence of other rating factors. ASTIN Bulletin, 27(2), 319327.CrossRefGoogle Scholar
Yip, K.C.H. & Yau, K.K.W. (2005). On modeling claim frequency data in general insurance with extra zeros. Insurance: Mathematics and Economics, 36(2), 153163.Google Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optimal design of a bonus-malus system: linear relativities revisited
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Optimal design of a bonus-malus system: linear relativities revisited
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Optimal design of a bonus-malus system: linear relativities revisited
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *