Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T18:38:03.788Z Has data issue: false hasContentIssue false

Evidence of positive selection towards Zebuine haplotypes in the BoLA region of Brangus cattle

Published online by Cambridge University Press:  14 July 2017

D. E. Goszczynski*
Affiliation:
Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria (IGEVET) (UNLP-CONICET LA PLATA), La Plata, Buenos Aires, Argentina
C. M. Corbi-Botto
Affiliation:
Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria (IGEVET) (UNLP-CONICET LA PLATA), La Plata, Buenos Aires, Argentina
H. M. Durand
Affiliation:
Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria (IGEVET) (UNLP-CONICET LA PLATA), La Plata, Buenos Aires, Argentina
A. Rogberg-Muñoz
Affiliation:
Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria (IGEVET) (UNLP-CONICET LA PLATA), La Plata, Buenos Aires, Argentina Departamento de Producción, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina Instituto de Investigaciones en Producción Animal (INPA) (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
S. Munilla
Affiliation:
Departamento de Producción, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina Instituto de Investigaciones en Producción Animal (INPA) (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
P. Peral-Garcia
Affiliation:
Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria (IGEVET) (UNLP-CONICET LA PLATA), La Plata, Buenos Aires, Argentina
R. J. C. Cantet
Affiliation:
Departamento de Producción, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina Instituto de Investigaciones en Producción Animal (INPA) (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
G. Giovambattista
Affiliation:
Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria (IGEVET) (UNLP-CONICET LA PLATA), La Plata, Buenos Aires, Argentina
Get access

Abstract

The Brangus breed was developed to combine the superior characteristics of both of its founder breeds, Angus and Brahman. It combines the high adaptability to tropical and subtropical environments, disease resistance, and overall hardiness of Zebu cattle with the reproductive potential and carcass quality of Angus. It is known that the major histocompatibility complex (MHC, also known as bovine leucocyte antigen: BoLA), located on chromosome 23, encodes several genes involved in the adaptive immune response and may be responsible for adaptation to harsh environments. The objective of this work was to evaluate whether the local breed ancestry percentages in the BoLA locus of a Brangus population diverged from the estimated genome-wide proportions and to identify signatures of positive selection in this genomic region. For this, 167 animals (100 Brangus, 45 Angus and 22 Brahman) were genotyped using a high-density single nucleotide polymorphism array. The local ancestry analysis showed that more than half of the haplotypes (55.0%) shared a Brahman origin. This value was significantly different from the global genome-wide proportion estimated by cluster analysis (34.7% Brahman), and the proportion expected by pedigree (37.5% Brahman). The analysis of selection signatures by genetic differentiation (Fst) and extended haplotype homozygosity-based methods (iHS and Rsb) revealed 10 and seven candidate regions, respectively. The analysis of the genes located within these candidate regions showed mainly genes involved in immune response-related pathway, while other genes and pathways were also observed (cell surface signalling pathways, membrane proteins and ion-binding proteins). Our results suggest that the BoLA region of Brangus cattle may have been enriched with Brahman haplotypes as a consequence of selection processes to promote adaptation to subtropical environments.

Type
Research Article
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Both authors contributed equally to this work.

References

Araya, VP, Bergel, A, Cassou, D, Ducasse, S and Laval, J 2013. Agile visualization with Roassal. In Deep into Pharo (ed. A Bergel, D Cassou, S Ducasse and J Laval), pp. 209–239. Square Bracket Associates, Switzerland.Google Scholar
Baran, Y, Pasaniuc, B, Sankararaman, S, Torgerson, DG, Gignoux, C, Eng, C, Rodriguez-Cintron, W, Chapela, R, Ford, JG, Avila, PC, Rodriguez-Santana, J, Burchard, EG and Halperin, E 2012. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics 28, 13591367.CrossRefGoogle ScholarPubMed
Bahbahani, H, Clifford, H, Wragg, D, Mbole-Kariuki, MN, Van Tassell, C, Sonstegard, T, Woolhouse, M and Hanotte, O 2015. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide single nucleotide polymorphism analysis. Scientific Reports 5, 11729.Google Scholar
Biegelmeyer, P, Nizoli, LQ, da Silva, SS, dos Santos, TRB, Dionello, NJL, Gulias-Gomes, CC and Cardoso, FF 2015. Bovine genetic resistance effects on biological traits of Rhipicephalus (Boophilus) microplus. Veterinary Parasitology 208, 231237.CrossRefGoogle ScholarPubMed
Cadzow, M, Boocock, J, Nguyen, HT, Wilcox, P, Merriman, TR and Black, MA 2014. A bioinformatics workflow for detecting signatures of selection in genomic data. Frontiers in Genetics 5, 293.Google Scholar
Cantet, RJC 2013. La otra carne de la historia: mejoramiento genético en Brangus y Braford en Argentina. Anales de la Academia Nacional de Agronomía y Veterinaria LXVII, 139160.Google Scholar
Danecek, P, Auton, A, Abecasis, G, Albers, CA, Banks, E and DePristo, MA 2011. The variant call format and VCFtools. Bioinformatics 27, 21562158.Google Scholar
Delaneau, O and Marchini, J, 1000 Genomes Project Consortium 2014. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nature Communications 5, 3934.Google Scholar
Dickerson, GE 1973. Inbreeding and heterosis in animals. In Proceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, pp. 54–77. ASAS and ADSA, Champaign, IL, USA.CrossRefGoogle Scholar
Ferrer-Admetlla, A, Liang, M, Korneliussen, T and Nielsen, R 2014. On detecting incomplete soft or hard selective sweeps using haplotype structure. Molecular Biology and Evolution 31, 12751291.Google Scholar
Flori, L, Gonzatti, MI, Thevenon, S, Chantal, I, Pinto, J, Berthier, D, Aso, PM and Gautier, M 2012. A quasi-exclusive European ancestry in the Senepol tropical cattle breed highlights the importance of the slick locus in tropical adaptation. PLoS One 7, e36133.CrossRefGoogle ScholarPubMed
Flori, L, Thevenon, S, Dayo, GK, Senou, M, Sylla, S, Berthier, D, Moazami-Goudarzi, K and Gautier, M 2014. Adaptive admixture in the West African bovine hybrid zone: insight from the Borgou population. Molecular ecology 23, 32413257.Google Scholar
Gautier, M, Flori, L, Riebler, A, Jaffrézic, F, Laloé, D, Gut, I, Moazami-Goudarzi, K and Foulley, JL 2009. A whole genome Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics 10, 550.Google Scholar
Gautier, M and Naves, M 2011. Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Molecular Ecology 20, 31283143.CrossRefGoogle ScholarPubMed
Gautier, M and Vitalis, R 2012. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28, 11761177.CrossRefGoogle Scholar
Hacia, JG, Fan, JB, Ryder, O, Jin, L, Edgemon, K and Ghandour, G 1999. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nature Genetics 22, 164167.CrossRefGoogle ScholarPubMed
Hogan, MC, Griffin, MD, Rossetti, S, Torres, VE, Ward, CJ and Harris, PC 2004. PKHDL1, a homolog of the autosomal recessive polycystic kidney disease gene, encodes a receptor with inducible T lymphocyte expression. Human Molecular Genetics 12, 685698.Google Scholar
Iso-Touru, T, Tapio, M, Vilkki, J, Kiseleva, T, Ammosov, I, Ivanova, Z, Popov, R, Ozerov, M and Kantanen, J 2016. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Animal Genetics 47, 647657.Google Scholar
Khayatzadeh, N, Mészáros, G, Utsunomiya, YT, Garcia, JF, Schnyder, U, Gredler, B, Curik, I and Sölkner, J 2016. Locus-specific ancestry to detect recent response to selection in admixed Swiss Fleckvieh cattle. Animal Genetics 47, 637646.Google Scholar
Kim, ES and Rothschild, MF 2014. Genomic adaptation of admixed dairy cattle in East Africa. Frontiers in Genetics 5, 443.CrossRefGoogle ScholarPubMed
Kim, ES, Sonstegard, TS and Rothschild, MF 2015. Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions. BMC Genomics 16, 302.Google Scholar
Martinez, ML, Machado, MA, Nascimento, CS, Silva, MVGB, Teodoro, RL, Furlong, J, Prata, MCA, Campos, AL, Guimarães, MFM, Azevedo, ALS, Pires, MFA and Verneque, RS 2006. Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genetics and Molecular Research 5, 513524.Google ScholarPubMed
Mi, H, Huang, X, Muruganujan, A, Tang, H, Mills, C, Kang, D and Thomas, PD 2016. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research 45, D183D189.CrossRefGoogle ScholarPubMed
Mi, H, Poudel, S, Muruganujan, A, Casagrande, JT and Thomas, PD 2016. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Research 44, D336D342.Google Scholar
Mikko, S and Anderson, L 1995. Extensive MHC class II DRB3 diversity in African and European cattle. Immunogenetics 42, 408413.CrossRefGoogle ScholarPubMed
Morales, HF and Giovambattista, G 2013. BioSmalltalk: a pure object system and library for bioinformatics. Bioinformatics 29, 23552356.Google Scholar
Pritchard, JK, Stephens, M and Donnelly, P 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Purcell, S., Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MAR, Bender, D, Maller, J, Sklar, P, de Bakker, PIW, Daly, MJ and Sham, PC 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics 81, 559575.Google Scholar
Qanbari, S, Pimentel, ECG, Tetens, J, Thaller, G, Lichtner, P, Sharifi, AR and Simianer, H 2010. A genome-wide scan for signatures of recent selection in Holstein cattle. Animal Genetics 41, 377389.Google Scholar
Sabeti, PC, Reich, DE, Higgins, JM, Levine, HZ, Richter, DJ and Schaffner, SF 2002. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832837.Google Scholar
Takeshima, SN and Aida, Y 2006. Structure, function and disease susceptibility of the bovine major histocompatibility complex. Animal Science Journal 77, 138150.Google Scholar
Tang, K, Thornton, KR and Stoneking, M 2007. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology 5, e171.Google Scholar
Vitti, JJ, Grossman, SR and Sabeti, PC 2013. Detecting natural selection in genomic data. Annual Review of Genetics 47, 97120.Google Scholar
Voight, BF, Kudaravalli, S, Wen, X and Pritchard, JK 2006. A map of recent positive selection in the human genome. PLoS Biology 4, e72.Google Scholar
Wojdak-Maksymiec, K, Kmiec, M, Kowalewska-Luczak, I and Warlinski, M 2010. DRB3 gene polymorphism and somatic cell count in milk of Jersey cows. Journal of Animal and Veterinary Advances 9, 12951300.Google Scholar
Xu, L, Bickhart, DM, Cole, JB, Schroeder, SG, Song, J, Tassell, CP, Sonstegard, TS and Liu, GE 2015. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Molecular Biology and Evolution 32, 711725.Google Scholar
Supplementary material: File

Goszczynski supplementary material

Figures S1-S3 and Tables S1-S2

Download Goszczynski supplementary material(File)
File 1.6 MB