Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-ncjtf Total loading time: 0.254 Render date: 2021-05-14T13:46:18.745Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Growth of total fat and lean and of primal cuts is affected by the sex type

Published online by Cambridge University Press:  10 February 2017

A. Carabús
Affiliation:
Department of Product Quality, IRTA, Finca Camps i Armet, 17121 Monells, Catalonia, Spain
R. D. Sainz
Affiliation:
Department of Animal Science, University of California, Davis, CA 95616, USA
J. W. Oltjen
Affiliation:
Department of Animal Science, University of California, Davis, CA 95616, USA
M. Gispert
Affiliation:
Department of Product Quality, IRTA, Finca Camps i Armet, 17121 Monells, Catalonia, Spain
M. Font-i-Furnols
Affiliation:
Department of Product Quality, IRTA, Finca Camps i Armet, 17121 Monells, Catalonia, Spain
Corresponding
E-mail address:
Get access

Abstract

Knowledge of tissue and cuts growth depending on the sex could be used to improve performance and efficiency. Computed tomography (CT) is a non-invasive technology that enables the study of the body composition of live animals during growth. The aims of the present study were (1) to evaluate variation in the body composition of four sex types (SEX) of pigs (castrated males (CM), immunocastrated males (IM), entire males (EM) and females (FE)) at the live weight of 30, 70, 100 and 120 kg, assessed using CT; (2) to model the growth of the main tissues and cuts; and (3) to predict the mature BW (MBW) of the four SEX and establish the relationships between the growth models and the MBW. There were significant phenotypic differences in the allometric growth of fat and lean among SEX. For the lean tissue, FE and EM showed higher values of the b coefficient than CM and IM (1.07 and 1.07 v. 1.00 and 1.02, respectively) all of them close to unity, indicating a proportional growth rate similar to live weight and that this tissue developed faster in FE and EM than in CM and IM. However, these differences were not related to differences in estimated MBW. There were significant differences in estimated MBW among SEX, being higher in IM and EM than in CM and FE (303 and 247 v. 219 and 216 kg), however, the MBW may have been overestimated, especially for the IM. The poorer accuracy of the MBW estimate for the IM could be due to a maximum live weight of 120 kg in the experiment, or to the fact that this particular SEX presented two clear behaviours, being more similar to EM from birth to the second injection of the vaccine (130 days) and comparable with CM from that point to the final BW.

Type
Research Article
Information
animal , Volume 11 , Issue 8 , August 2017 , pp. 1321 - 1329
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bardera, A, Martίnez, R, Boada, I, Font-i-Furnols, M and Gispert, M 2012. VisualPork towards the simulation of a virtual butcher. In Proceedings of the First Annual Farm Animal Imaging Conference on Carcass Evaluation, Meat Quality, Software and Traceability, 25–26 September, Dublin, Ireland, 97pp.Google Scholar
Batorek, N, Čandek-Potokar, M, Bonneau, M and Van Milgen, J 2012. Meta-analysis of the effect of immunocastration on production performance, reproductive organs and boar taint compounds in pigs. Animal 6, 13301338.CrossRefGoogle Scholar
Boada, I, Spinola, J, Rodriguez, J, Martínez, R and Font-i-Furnols, M 2009. VisualPork towards the simulation of a Virtual Butcher. In Proceedings of the 2nd Workshop on the Use of Computed Tomography (CT) in Pig Carcass Classification. Other CT applications: Live Animals and Meat Technology, 16–17 April, Monells, Catalunya.Google Scholar
Carabús, A, Gispert, M, Brun, A, Rodríguez, P and Font-i-Furnols, M 2014. In vivo computed tomography evaluation of the composition of the carcass and various cuts of growing pigs of three commercial crossbreeds. Livestock Production Science 170, 191192.Google Scholar
Carabús, A, Sainz, RD, Oltjen, JW, Gispert, M and Font-i-Furnols, M 2015. Predicting fat, lean and the weight of primal cuts of pigs of different genotypes and sexes using computed tomography. Journal of Animal Science 93, 110.CrossRefGoogle Scholar
D’Souza, DN and Mullan, BP 2002. The effect of genotype, sex, and management strategy on the eating quality of pork. Meat Science 60, 95101.CrossRefGoogle ScholarPubMed
Dunshea, FR, Colantoni, C, Howard, K, McCauley, I, Jackson, P, Long, KA, Lopaticki, S, Nugent, EA, Simons, JA, Walker, J and Hennessy, DP 2001. Vaccinations of boars with GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. Journal of Animal Science 79, 25242535.CrossRefGoogle Scholar
Fàbrega, E, Velarde, A, Cros, J, Gispert, M, Suárez, P, Tibau, J and Soler, J 2010. Effect of vaccination against gonadotrophin-releasing hormone, using Improvac®, on growth performance, body composition, behaviour and acute phase proteins. Livestock Science 132, 5359.CrossRefGoogle Scholar
Ferguson, NS, Gous, RM and Emmans, CG 1994. Preferred components for the construction of a new simulation model of growth, feed intake and nutrient requirements of growing pigs. South African Journal of Animal Science 24, 1017.Google Scholar
Fisher, AV, Green, DM, Whittemore, CT, Wood, JD and Schofield, CP 2003. Growth of carcass components and its relation with conformation in pigs of three types. Meat Science 65, 639650.CrossRefGoogle ScholarPubMed
Font-i-Furnols, M, Carabús, A, Pomar, C and Gispert, M 2014. Estimation of carcass and cuts composition from computed tomography images of growing live pigs of different genotypes. Animal 9, 166178.CrossRefGoogle Scholar
Gispert, M, Oliver, MA, Velarde, A, Suarez, P, Perez, J and Font i Furnols, M 2010. Carcass and meat quality characteristics of immunocastrated male, surgically castrated male, entire male and female pigs. Meat Science 85, 664670.CrossRefGoogle ScholarPubMed
Gompertz, B 1825. On the nature of the function expressive of the law of human mortality and on a new method of determining the value of contingencies. Philosophical Transactions of the Royal Society of London 115, 513585.CrossRefGoogle Scholar
Gould, SJ 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. The American Naturalist 105, 113136.CrossRefGoogle Scholar
Huxley, JS 1932. Problems of relative growth. Methuen, Co. Ltd, London, UK.Google Scholar
Huxley, JS 1950. Relative growth and form transformation. Proceedings of the Royal Society of London 137 (B), 465469.CrossRefGoogle ScholarPubMed
Ibáñez-Escriche, N and Blasco, A 2011. Modifying growth curve parameters by multitrait genomic selection. Journal of Animal Science 89, 661668.CrossRefGoogle Scholar
Jaros, P, Burgi, E, Stärk, KDC, Claurs, R, Hennessy, D and Thun, R 2005. Effect of active immunisation against GnRH on androstenone concentration, growth performance and carcass quality in intact male pigs. Livestock Production Science 92, 3138.CrossRefGoogle Scholar
Knap, PW 2000. Variation in maintenance requirements of growing pigs in relation to body composition. A simulation study. PhD thesis, Wageningen University, The Netherlands.Google Scholar
Kolstad, K 2001. Fat deposition and distribution measured by computer tomography in three genetic groups of pigs. Livestock Production Science 67, 281292.CrossRefGoogle Scholar
Kyriazakis, I and Emmans, GC 1991. Diet selection in pigs: dietary choices made by growing pigs following a period of underfeeding with protein. Animal Production 52, 337346.CrossRefGoogle Scholar
Latorre, MA, Lázaro, R, Gracia, MI, Nieto, M and Mateos, GG 2003. Effect of sex and terminal sire genotype on performance, carcass characteristics, and meat quality of pigs slaughtered at 117 kg body weight. Meat Science 65, 13691377.CrossRefGoogle Scholar
McLaren, DG, McKeith, FM and Novakofski, J 1988. Prediction of carcass characteristics at market weight from serial real-time ultrasound measures of backfat and loin eye area in the growing pigs. Journal of Animal Science 67, 16571667.CrossRefGoogle Scholar
SAS 2001. Statistical Analysis Software, version 9.3. © SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513, USA.Google Scholar
Schinckel, AP, Mahan, DC, Wiseman, TG and Einstein, E 2008. Growth of protein, moisture, lipid, and ash of two genetic lines of barrows and gilts from twenty to one hundred and twenty-five kilograms of body weight. Journal of Animal Science 86, 460471.CrossRefGoogle ScholarPubMed
Strathe, AB, Danfer, A and Sorensen, H 2009. A new mathematical model for combining growth and energy intake in animals. The case of the growing pig. Journal of Theoretical Biology 261, 165175.CrossRefGoogle ScholarPubMed
Vincek, D, Sabo, K, Kusec, G, Kralik, G, Durkin, I and Scitovski, R 2012. Modeling of pig growth by S-function - least absolute deviation approach for parameter estimation. Archiv fur Tierzucht 55, 364374.Google Scholar
Wellock, IJ, Emmans, GC and Kyriazakis, I 2004. Describing and predicting potential growth in the pig. Journal of Animal Science 78, 379388.Google Scholar
Supplementary material: File

Carabús supplementary material

Tables S1-S2

Download Carabús supplementary material(File)
File 22 KB

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of total fat and lean and of primal cuts is affected by the sex type
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of total fat and lean and of primal cuts is affected by the sex type
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of total fat and lean and of primal cuts is affected by the sex type
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *