Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T01:11:32.276Z Has data issue: false hasContentIssue false

Influence of dietary protein concentration on the morphology and enzyme activities of the small intestine of the pre-ruminant calf

Published online by Cambridge University Press:  18 August 2016

L. Montagne
Affiliation:
Unité Mixte de Recherches sur le Veau et le Porc (UMRVP), Institut National de la Recherche Agronomique/Ecole Nationale Supérieure Agronomique de Rennes, 65 rue de Saint-Brieuc, 35042 Rennes Cedex, France
C. Plut
Affiliation:
Unité Mixte de Recherches sur le Veau et le Porc (UMRVP), Institut National de la Recherche Agronomique/Ecole Nationale Supérieure Agronomique de Rennes, 65 rue de Saint-Brieuc, 35042 Rennes Cedex, France
R. Toullec
Affiliation:
Unité Mixte de Recherches sur le Veau et le Porc (UMRVP), Institut National de la Recherche Agronomique/Ecole Nationale Supérieure Agronomique de Rennes, 65 rue de Saint-Brieuc, 35042 Rennes Cedex, France
Get access

Abstract

The aim of this study was to investigate the impact of a protein-free diet or diets differing in protein level on the morphology and enzyme activities of the small intestinal mucosa of the pre-ruminant calf.

Diets contained 14, 104, 205 and 279 g crude protein (CP) per kg dry matter (DM) supplied by skimmed-milk powder (SMP) and cream. Holstein male calves (no. = 6) aged 6 weeks (65 to 75 kg) were fitted with an abomasal catheter and simple T-piece cannulae in the duodenum, jejunum and ileum. The milk replacers were continuously infused into the abomasum. Each calf tested the four diets randomly during four experimental periods. Biopsies of intestinal mucosa were collected at each intestinal site through the cannulae and were used for morphology measurements (villus and crypt area, height and width) and the determination of the activities of dipeptidyl-peptidase IV, amino-peptidases A and N, lactase and alkaline phosphatase.

When the dietary CP level increased from 14 to 205 g/kg DM, villus height quadratically increased by proportionately 0·35 (P < 0·05) and crypt width linearly increased by proportionately 0·25 (P < 0·01) at the jejunum. This effect was associated with linear increases in the activities of dipeptidyl-peptidase IV and lactase and a quadratic increase in the activity of alkaline phosphatase.

To conclude, feeding a protein-free diet impacted negatively on the morphology and hydrolytic activity of the calf’s small intestine. These observations may partly explain the fact that endogenous protein losses measured with such a diet are often lower than in physiological conditions.

Type
Ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chinery, R., Goodlad, R. A. and Wright, N. A. 1992. Soy polysaccharide in an enteral diet: effects on rat intestinal cell proliferation, morphology and metabolic function. Clinical Nutrition 11: 277283.CrossRefGoogle Scholar
Dudley, M. A., Wykes, L., Dudley, A. W., Fiorotto, M., Burrin, D. G., Rosenberger, J., Jahoor, F. and Reeds, P. J. 1997. Lactase phlorizin hydrolase synthesis is decreased in protein-malnourished pigs. Journal of Nutrition 127: 687693.CrossRefGoogle ScholarPubMed
Evans, N., Farrow, L. J. and Wright, N. A. 1970. New techniques for speeding small intestinal biopsies. Gut 11: 8889.CrossRefGoogle Scholar
Felipoff, A. L. and Rio, M. E. 1982. Kinetic constants of lactase of the small intestine of growing rats fully recovered from protein depletion, in relation to dietary protein and lactose concentration. Journal of Nutritional Sciences and Vitaminology 28: 477782.CrossRefGoogle ScholarPubMed
Goodlad, R. A., Plumb, J. A. and Wright, N. A. 1988. Epithelial cell proliferation and intestinal absorptive function during starvation and refeeding in the rat. Clinical Science 74: 301306.CrossRefGoogle ScholarPubMed
Grant, A. L., Holland, R. E., Thomas, J. W., King, K. J. and Liesman, J. S. 1989. Effects of dietary amines on the small intestine in calves fed soybean protein. Journal of Nutrition 119: 10341041.CrossRefGoogle ScholarPubMed
Guilloteau, P., Toullec, R., Grongnet, J. F., Patureau-Mirand, P., Prugnaud, J. and Sauvant, D. 1986. Digestion of milk, fish and soyabean protein in the preruminant calf: flow of digesta, apparent digestibility at the end of the ileum and amino acid composition of ileal digesta. British Journal of Nutrition 55: 571592.CrossRefGoogle ScholarPubMed
Guiraldes, E. and Hamilton, J. R. 1981. Effect of chronic malnutrition on intestinal structure, epithelial renewal and enzymes in suckling rats. Pediatric Research 15: 930934.CrossRefGoogle ScholarPubMed
Hartley, H. O. 1950. The maximum F-ratio as a short test for heterogeneity of variance. Biometrika 37: 308312.Google Scholar
Jin, L., Reynolds, L. P., Redmer, D. A. and Caton, J. S. 1994. Effects of dietary fiber on intestinal growth, cell proliferation, and morphology in growing pigs. Journal of Animal Science 72: 22702278.CrossRefGoogle ScholarPubMed
Lallès, J.-P. 1993. Nutritional and antinutritional aspects of soyabean and field pea proteins used in veal calf production. A review. Livestock Production Science 34: 181202.CrossRefGoogle Scholar
Lallès, J.-P. and Jansman, A. J. M. 1998. Recent progress in the understanding of the mode of action and effects of antinutritional factors from legume seeds in non-ruminant farm animal. In Recent advances of research in antinutritional factors in legume seeds and rapeseed (ed. Jansman, A.J.M., Hill, G.D., Huisman, J. and van der Poel, A.F.B.), European Association for Animal Production publication no. 93, pp. 219232.Google Scholar
Montagne, L., Toullec, R., Formal, M. and Lallès, J.-P. 2000a. Influence of dietary protein level and origin on the flow of mucin along the small intestine of the preruminant calf. Journal of Dairy Science 83: 28202828.CrossRefGoogle ScholarPubMed
Montagne, L., Toullec, R. and Lallès, J.-P. 2000b. Quantitative and qualitative changes in endogenous nitrogen components along the small intestine of the calf. Journal of the Science of Food and Agriculture 80: 21232134.3.0.CO;2-9>CrossRefGoogle Scholar
Montagne, L., Toullec, R., Savidge, T. C. and Lallès, J.-P. 1999. Influence of protein source and antigenicity of soyabean on morphology and enzyme activities of the proximal jejunum in preruminant calf. Reproduction, Nutrition, Development 39: 8081.CrossRefGoogle Scholar
Nielsen, N. C., Deshpande, S. S., Hermodson, M. A. and Scott, M. P. 1988. Comparative digestibility of legume storage protein. Journal of Agricultural and Food Chemistry 3: 896902.CrossRefGoogle Scholar
Nuñez, M. C., Bueno, J. D., Ayudarte, M. V., Allmendros, A., Rios, A., Suarez, M. D. and Gil, A. 1996. Dietary restriction induces biochemical and morphological changes in the small intestine of nursing piglets. Journal of Nutrition 126: 933944.CrossRefGoogle Scholar
Nyachoti, C. M., Lange, C. F. M. de, MacBride, B. W. and Schulze, H. 1997. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Canadian Journal of Animal Science 77: 149163.CrossRefGoogle Scholar
Peiniau, J., Souffrant, W. B. and Aumaitre, A. 1994. Effects of dietary protein level on pancreatic enzymes and intestinal peptidase in the weaned piglet. In Proceedings of the sixth international symposium on digestive physiology in pigs, Bad Doberan (ed. Souffrant, W. B. and Hagemeister, H.), European Association for Animal Production publication no. 60, pp. 188190.Google Scholar
Poullain, M. G., Cezard, J. P., Marche, C., Roger, L. and Broyart, J. P. 1989. Dietary whey protein and their peptides or amino acids: effects on the jejunal mucosa of starved rats. American Journal of Clinical Nutrition 49: 7176.CrossRefGoogle ScholarPubMed
Puygserver, A., Wicker, C. and Gaucher, C. 1986. Adaptation of pancreatic and intestinal hydrolases to dietary changes. In Molecular and cellular basis of digestion (ed. Desnuelle, P., Sjöstrom, H. and Norén, O.), pp. 113124. Elsevier Science Publisher BV, Amsterdam.Google Scholar
Raul, F., Goda, T., Gossé, F. and Koldovsky, O. 1987. Short-term effect of a high-protein/low-carbohydrate diet on aminopeptidase in adult rat jejunoileum. Biochemical Journal 247: 401405.CrossRefGoogle ScholarPubMed
Rérat, A. and Corring, T. 1991. Animal factors affecting protein digestion and absorption. In Proceedings of the fifth international symposium on digestive physiology in pigs (ed. Verstengen, M. W. A., Huisman, J. and den Hartog, L.A.), pp. 534. Pudoc, Wageningen, The Netherlands,Google Scholar
Seegraber, F. J. and Morrill, J. L. 1986. Effect of protein source in calf milk replacers on morphology and absorptive ability of small intestine. Journal of Dairy Science 69: 460469.CrossRefGoogle ScholarPubMed
Sève, B. and Henry, Y. 1996. Protein utilization in non ruminants. In Proceedings of the seventh symposium on protein metabolism and nutrition, Vale de Santarém (ed. Nunes, A. F., Portugal, A.V., Costa, J. P. and Ribeiro, J. R.), European Association for Animal Production publication no. 81, pp. 5982.Google Scholar
Statistical Analysis Systems Institute. 1990. User’s guide: statistics, version 6·0 edition. SAS Institute Inc., Cary, NC.Google Scholar
Tivey, D. R., Morovat, A. and Dauncey, M. J. 1993. Administration of 3, 5, 5’-triiodothyronine induces a rapid increase in enterocyte lactase-phlorizin hydrolase activity of young pigs on a low energy intake. Experimental Physiology 78: 337346.CrossRefGoogle Scholar
Toullec, R., Frantzen, J. F. and Mathieu, C. M. 1974. Influence de la coagulation des protéines du lait sur l’utilisation digestive d’un lait de remplacement chez le veau préruminant. Annales de Zootechnie 23: 359364.CrossRefGoogle Scholar
Tuba, J. and Dickie, N. 1955. The role of alkaline phosphatase in intestinal absorption. IV. The effects of various proteins on levels of the enzyme in intestinal mucosa. Canadian Journal of Biochemistry and Physiology 33: 8992.CrossRefGoogle ScholarPubMed
Windmueller, H. G. 1982. Glutamine utilization by the small intestine. Advances in Enzymology 53: 201237.Google ScholarPubMed
Zambonino-Infante, J.L, Rouanet, J. M., Caporiccio, B. and Besançon, P. 1989. Effects of dietary protein and carbohydrate level in the rat small intestine: enzymic, histological and electron microscopy studies. Nutritional Reports International 40: 313321.Google Scholar