Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T03:59:15.869Z Has data issue: false hasContentIssue false

The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables

Published online by Cambridge University Press:  18 August 2016

M. Zähner
Affiliation:
Swiss Federal Veterinary Office, Centre for Proper Housing of Ruminants and Pigs, FAT, CH-8356 Tänikon, Switzerland
L. Schrader*
Affiliation:
Swiss Federal Institute of Technology (ETH) Zurich, Institute of Animal Sciences, Physiology and Animal Husbandry, CH-8092 Zurich, Switzerland
R. Hauser
Affiliation:
Swiss Federal Veterinary Office, Centre for Proper Housing of Ruminants and Pigs, FAT, CH-8356 Tänikon, Switzerland
M. Keck
Affiliation:
Swiss Federal Research Station for Agricultural Economics and Engineering, FAT, CH-8356 Tänikon, Switzerland
W. Langhans
Affiliation:
Swiss Federal Institute of Technology (ETH) Zurich, Institute of Animal Sciences, Physiology and Animal Husbandry, CH-8092 Zurich, Switzerland
B. Wechsler
Affiliation:
Swiss Federal Veterinary Office, Centre for Proper Housing of Ruminants and Pigs, FAT, CH-8356 Tänikon, Switzerland
*
Corresponding author. E-mail:lars.schrader@fal.de
Get access

Abstract

This study aimed to assess whether cows are able to cope with the range of climatic conditions they are exposed to in open stables on commercial farms in central Europe. On each of four farms, ten lactating cows were observed over a total of five weeks in winter, spring and summer. Based on continuous measurements of air temperature (–13·8 to 28·7ºC) and relative air humidity (0·26 to 0·99), a mean value of a temperature humidity index (THI) was calculated for each farm and each observation day for night and day.

THI had significant effects on skin temperature and body surface temperature (infra-red thermography) both during night and day. Rectal temperature, duration of lying and cortisol concentration in the milk was significantly affected by THI during the day but not during the night. Heart rate and frequency of lying did not significantly covary with THI. Differences between farms and interactions between THI and farm were significant for most parameters. These results suggest that the climatic conditions during the day induced stronger thermoregulatory responses than the conditions during the night. Within the measured range of climatic conditions the cows were hardly exposed to severe cold or heat stress.

Type
Ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, M. B. and Johnson, H. D. 1973. Environmental heat exposure on cattle plasma catecholamine and glucocorticoids. Journal of Dairy Science 56: 189194.Google Scholar
Berman, A. and Meltzer, A. 1973. Critical temperatures in lactating dairy cattle: a new approach to an old problem. International Journal of Biometeorology 17: 167176.Google Scholar
Bremel, R. D. and Gangwer, M. I. 1978. Effect of adrenocorticotropin injection and stress on milk cortisol content. Journal of Dairy Science 61: 11031108.Google Scholar
Broucek, J., Arave, C. W., Uhrincat, M., Knizkova, I. and Kunc, P. 1997. Effects of cold weather on cows kept in open barn. Proceedings of the ninth international congress in animal hygiene (ed. Saloniemi, H.), pp. 492495. Tummavouren Kirjapaino Oy, Helsinki.Google Scholar
Christison, G. I. and Johnson, H. D. 1972. Cortisol turnover in heat-stressed cows. Journal of Animal Science 35: 10051010.Google Scholar
Hahn, G. L. and Mader, T. L. 1997. Heat waves in relation to thermoregulation, feeding behavior and mortality of feedlot cattle. In Livestock environment V: Proceedings of the fifth international symposium of the American Society of Agricultural Engineers, St Joseph, MI, (ed. Bottcher, R. W. and Hoff, S. J.), pp. 563571.Google Scholar
Hahn, G. L., Nienaber, J. A. and Eigenberg, R. A. 1998. Responses of livestock to thermal environments as a basis for rational management. Proceedings of the international conference on agricultural engineering, Oslo, AgEng 98, pp. 103104.Google Scholar
Hammond, A. C., Olson, T. A., Chase, C. C. Jr, Bowers, E. J., Randel, R. D., Murphy, C. N., Vogt, D. W. and Tewolde, A. 1996. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus and Hereford cattle in Florida. Journal of Animal Science 74: 295303.Google Scholar
Hauser, R., Schaub, J. and Friedli, K. 1999. Sensor zum Erfassen der Liegezeiten bei Kühen. In Bau, Technik und Umwelt 1999 in der landwirtschaftlichen Nutztierhaltung, pp. 261266. Institut für Landtechnik der TU MünchenWeihenstephan, Landtechnik Weihenstephan, Freising.Google Scholar
Houseal, G. A. and Olson, B. E. 1995. Cattle use of microclimates on a northern latitude winter range. Canadian Journal of Animal Science 75: 501507.Google Scholar
Lacetera, N., Bernabucci, U., Ronchi, B., Scalia, D. and Nardone, A. 2002. Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows. International Journal of Biometeorology 46: 3337.Google Scholar
Legates, J. E., Farthing, B. R., Casady, R. B. and Barrada, M. S. 1991. Body temperature and respiratory rate of lactating dairy cattle under field and chamber conditions. Journal of Dairy Science 74: 24912500.CrossRefGoogle ScholarPubMed
McDonald, M. A. and Bell, J. M. 1958. Effects of low fluctuating temperatures on farm animals. I. Influence of ambient air temperature on the respiration rate, heart rate, and rectal temperature of lactating Holstein-Friesien cows. Canadian Journal of Animal Science 38: 1022.Google Scholar
McDowell, R. E., Moody, E.G., Van Soest, P. J., Lehmann, R. P. and Ford, G. L. 1969. Effect of heat stress on energy and water utilization of lacating cows. Journal of Dairy Science 52: 188194.CrossRefGoogle Scholar
Maust, L. E., McDowell, R. E. and Hooven, N. W. 1972. Effect of summer weather on performance of Holstein cows in three stages of lactation. Journal of Dairy Science 55: 11331139.Google Scholar
Miescke, B., Johnson, E. H., Weniger, J. H. and Steinhauf, D. 1978. Der Einfluss von Wärmebelastung auf Thermoregulation und Leistung laktierender Kühe. Zeitschrift für Tierzüchtung und Züchtungsbiologie 95: 259268.CrossRefGoogle Scholar
Naunheimer-Thoneick, H., Thomas, C. K. and Weniger, J. H. 1988. Untersuchungen zum Energieumsatz von laktierenden Kühen unter Wärmebelastung. III. Der Effekt von langzeitig hoher Umgebungstemperatur auf Parameter der Thermoregulation, Futteraufnahme und Milchleistung. Züchtungskunde 60: 376387.Google Scholar
Roman-Ponce, H., Thatcher, W. W., Buffington, D. E., Wilcox, C. J. and Van Horn, H. H. 1977. Physiological and production responses of dairy cattle to a shade structure in a subtropical environment. Journal of Dairy Science 60: 424430.CrossRefGoogle Scholar
Shrode, R. R., Quazi, F. R., Rupel, I. W. and Leighton, R. E. 1960. Variation in rectal temperature, respiration rate, and pulse rate of cattle as related to variation in four environmental variables. Journal of Dairy Science 43: 12351244.Google Scholar
Sörensen, B. and Weniger, J. H. 1987. Untersuchungen zum Energieumsatz von laktierenden Kühen unter Wärmebelastung, II. Ergebnisse zum Energieumsatz in verschiedenen Abschnitten der Laktation sowie Beziehungen zu weiteren thermoregulatorisch relevanten Funktionsparametern. Züchtungskunde 59: 307315.Google Scholar
Spain, J. N. and Spiers, D. 1998. Effect of fan cooling on thermoregulatory responses of lactating dairy cattle to moderate heat stress. Proceedings of the fourth international dairy housing conference of the American Society of Agricultural Engineers, St Joseph, MI (ed. Chastain, J. P.), pp. 232238.Google Scholar
Termeulen, S. B., Butler, W. R. and Natzke, R. P. 1981. Rapidity of cortisol transfer between blood and milk following adrenocorticotropin injection. Journal of Dairy Science 64: 21972200.Google Scholar
Verkerk, G. A., Phipps, A. M., Carragher, J. F., Matthews, L. R. and Stelwagen, K. 1998. Characterization of milk cortisol concentrations as a measure of short-term stress responses in lactating dairy cows. Animal Welfare 7: 7786.CrossRefGoogle Scholar
Wassmuth, R., Wallbaum, F. and Langholz, H.-J. 1999. Outdoor wintering of suckler cows in low mountain ranges. Livestock Production Science 61: 193200.Google Scholar
West, J. W. 1994. Interactions of energy and bovine somatotropin with heat stress. Journal of Dairy Science 77: 20912102.CrossRefGoogle ScholarPubMed
Wise, M. E., Armstrong, D. V., Huber, J. T., Hunter, R. and Wiersma, F. 1988. Hormonal alterations in the lactating dairy cow in response to thermal stress. Journal of Dairy Science 71: 24802485.CrossRefGoogle ScholarPubMed
Zähner, M. 2001. Beurteilung von Minimalställen für Milchvieh anhand ethologischer und physiologischer Indikatoren. Ph. D. thesis, ETH Zürich.Google Scholar