Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T19:14:58.529Z Has data issue: false hasContentIssue false

Characterization of the microbial and biochemical profile of the different segments of the digestive tract in horses given two distinct diets

Published online by Cambridge University Press:  18 August 2016

A. de Fombelle
Affiliation:
EVIALIS, 56 250 Saint Nolff, France
M. Varloud
Affiliation:
EVIALIS, 56 250 Saint Nolff, France
A.-G. Goachet
Affiliation:
ENESAD, 26 bvd Dr Petitjean, BP87999, 21079 Dijon cedex, France
E. Jacotot
Affiliation:
ENESAD, 26 bvd Dr Petitjean, BP87999, 21079 Dijon cedex, France
C. Philippeau
Affiliation:
ENESAD, 26 bvd Dr Petitjean, BP87999, 21079 Dijon cedex, France
C. Drogoul
Affiliation:
ENESAD, 26 bvd Dr Petitjean, BP87999, 21079 Dijon cedex, France
V. Julliand*
Affiliation:
ENESAD, 26 bvd Dr Petitjean, BP87999, 21079 Dijon cedex, France
*
Get access

Abstract

A first group of three horses was given diet 1 (D1) allowing 1180 g per 100 kg body weight (BW) of a pelleted food rich in fibre (P1) and 556 g per 100 kg BW of straw during a 20-day period to allow for adaptation. A second group of four horses were given diet 2 (D2) allowing 1180 g per 100 kg BW of a pelleted food rich in cereals (P2) and 1000 g per 100 kg BW of meadow hay during the same period. Digesta was collected from the stomach, duodenum, jejunum, ileum, caecum, right ventral colon, left ventral colon, left dorsal colon, right dorsal colon, and small colon, and faeces were collected under general anaesthesia 2·5 h after the ingestion of the morning pelleted meal. The concentration of total anaerobic, cellulolytic and lactic acid-utilizing bacteria, lactobacilli and streptococci were determined in all these segments except for the duodenum, left ventral colon, right dorsal colon and small colon. D-/L-lactic acid, volatile fatty acids and pH were measured in all anatomic segments of the digestive tract (from stomach to small colon). The caecal concentration of total anaerobic bacteria was the lowest (7·9 5 107 colony-forming units (c f. u.) per ml), whereas that of the stomach was the highest (1·4 5 109 c f. u. per ml) (P < 0·001). Cellulolytic bacteria did not exceed 3·0 5 102 c f u. per ml in the ante-caecal segments whereas in the hindgut the average concentration was 5·3 x 105 c f u. per ml (P < 0·001). Likewise, VFA concentrations were also greater in the large intestine (on average, 96·3 mmol/l v. 8·8 mmol/l in the ante-caecal segments) (P < 0·001), confirming the limited extent of fibre degradation in these ante-caecal segments. Lactobacilli, streptococci and lactate-utilizing bacteria colonized all the digestive tract; the stomach and the small intestine tended to host the greatest numbers of these bacteria, which suggests a high interference of micro-organisms with the digestion of readily fermentable carbohydrates. Compared with the other ante-caecal segments, the stomach ecosystem seemed the most affected by the composition of the last pelleted meal ingested: the concentrations of lactobacilli and lactate-utilizing bacteria were higher (P < 0·05) with P2. The lower concentration of D-/L-lactate with P2 (P < 0·05) was concomitant with a greater proportion of propionate (P < 0·05), probably related to a greater fermentation of lactate. In the large intestine of horses given D2, cellulolytic bacteria tended to be lower, whereas VFA concentrations were higher (P < 0·05). The lower [NDF/starch] ratio of D2 was probably less propitious for the proliferation of cellulolytic bacteria but was compensated by the higher cellulose intake brought by the hay.

Type
Non-ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, F. and Davies, E. 1963. Production and fermentation of lactate by bacteria in the alimentary canal of the horse and pig. Journal of Comparative Pathology 73: 18.Google Scholar
Alexander, F., MacPherson, M. and Oxford, A. E. 1952. Fermentative activities of some members of the normal coccal flora of the horses large intestine. Journal of Comparative Pathology 62: 252259.Google Scholar
Baruc, J. C., Dawson, K. A. and Baker, J. P. 1983. The characterization and nitrogen metabolism of equine caecal bacteria. Proceedings of the eighth equine nutrition and physiology symposium, pp. 151156. University of Kentucky, USA.Google Scholar
Bertone, A. L., Ralston, S. L. and Stashak, T. S. 1989. Fiber digestion and voluntary intake in horses after adaptation to extensive large-colon resection. American Journal of Veterinary Research 50: 16281632.Google Scholar
Bryant, M. P. and Burkey, L. A. 1953. Cultural methods and some characteristics of the more numerous groups of bacteria in the bovine rumen. Journal of Dairy Science 36: 205217.Google Scholar
Counotte, G. H. M., Lankhorst, A. and Prins, R. A. 1983. Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. Journal of Animal Science 56: 12221235.Google Scholar
Drogoul, C., Faurie, F. and Tisserand, J. L. 1995. Estimation of the contribution of the pony’s colon in fibre digestion: a methodological approach. Annales de Zootechnie 44: 182.Google Scholar
Duprat, F., Gallant, D., Guilbot, A., Mercier, C. and Robin, J. P. 1980. L’amidon. In Les polymères végétaux, polymères pariétaux et alimentaires non azotés (ed. Montiès, B.), pp. 176231. Gauthier-Villards.Google Scholar
Espinasse, J., Kuiper, R. and Schelcher, F. 1995. Physiopathologie du complexe gastrique. In Nutrition des ruminants domestiques — ingestion et digestion (ed. Jarrige, R., Ruckebusch, Y., Demarquilly, C., Farce, M.-H. and Journet, M.), pp. 805852. INRA, Paris.Google Scholar
Fombelle, A.de, Julliand, V., Drogoul, C. and Jacotot, E. 2001. Feeding and microbial disorder. 1. Effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profiles and activities. Journal of Equine Veterinary Science 21: 439444.Google Scholar
Garner, H. E., Moore, J. N., Johnson, J. H., Clark, L., Amend, J. F., Tritschler, L. G. and Coffman, J. R. 1978. Changes in the caecal flora associated with the onset of laminitis. Equine Veterinary Journal 10: 249252.Google Scholar
Goodson, J., Tyznik, W. J., Cline, J. H. and Dehority, B. A. 1988. Effects of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the cecum of the pony. Applied and Environmental Microbiology 54: 19461950.CrossRefGoogle ScholarPubMed
Halliwell, G. and Bryant, M. P. 1963. The cellulolytic activity of pure culture strains of bacteria from the rumen of cattle. Journal of Generic Microbiology 32: 441448.Google Scholar
Healy, H. P., Siciliano, P. D. and Lawrence, L. M. 1995. Effect of concentrate form on blood and gastric fluid variables in ponies. Journal of Equine Veterinary Science 15: 423428.CrossRefGoogle Scholar
Herd, R. 1992. Choosing the optimal equine anthelminthic. Veterinary Medicine 87: 232239.Google Scholar
Hintz, H. F., Argenzio, R. A. and Schryver, H. F. 1971. Digestion coefficients, blood glucose levels and molar percentage of volatile acids in intestinal fluid of ponies fed varying forage-grain ratios. Journal of Animal Science 33: 992995.CrossRefGoogle ScholarPubMed
Hume, I. D. and Sakagushi, E. 1991. Patterns of digesta flow and digestion in foregut and hindgut fermenters. Proceedings of the seventh international symposium on ruminant physiology, pp. 427451.Google Scholar
Hutchens, D. E., Paul, A. J. and di Pietro, J. A. 1999. Tr eatment and control of gastrointestinal parasites. Veterinary Clinics of North America: Equine Practice 15: 561573.Google Scholar
Jouany, J. P. 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sciences des Aliments 2: 131144.Google Scholar
Julliand, V., Fombelle, A.de, Drogoul, C. and Jacotot, E. 2001. Feeding and microbial disorders in horses. 3. Effects of three hay:grain ratios on microbial profile and activities. Journal of Equine Veterinary Science 21: 543546.CrossRefGoogle Scholar
Julliand, V., Vaux, A.de, Millet, L. and Fonty, G. 1999. Identification of Ruminococcus flavefaciens as the predominant celluloytic bacterial species of the eqine cecum. Applied and Environmental Microbiology 65: 3788–3741.CrossRefGoogle Scholar
Kern, D. L., Slyter, L. L., Leffel, E. C., Weaver, J. M. and Oltjen, R. R. 1974. Ponies vs. steers: microbial and chemical characteristics of intestinal ingesta. Journal of Animal Science 38: 559564.Google Scholar
Kern, D. L., Slyter, L. L., Weaver, J. M., Leffel, E. C. and Samuelson, G. 1973. Pony cecum vs. steer rumen: the effect of oats and hay on the microbial ecosystem. Journal of Animal Science 37: 463469.CrossRefGoogle ScholarPubMed
Kienzle, E. 1994. Small intestinal digestion of starch in the horse. Revue de Médecine Vétérinaire 145: 199204.Google Scholar
Kollarczik, B., Enders, C., Friedrich, M. and Gedek, B. 1992. Effect of diet composition on microbial spectrum in the jejunum of horses. 1. Europäische Konferenz über die Ernährung des Pferdes-Physiologie und Pathologie des Verdauungskanals-Konsequenzen für die Ernährung, pp. 4954. Pferdeheilkunde, Hannover.Google Scholar
Leeddle, J. A. Z. and Hespell, R. E. 1980. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacteria populations. Applied and Environmental Microbiology 34: 709719.Google Scholar
Mackie, R. I. and Heath, A. B. 1979. Enumeration and isolation of lactate-utilizing bacteria from the rumen of sheep. Applied and Environmental Microbiology 38: 416421.Google Scholar
Mackie, R. I. and Wilkins, C. A. 1988. Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Applied and Environmental Microbiology 54: 21552160.CrossRefGoogle ScholarPubMed
Martin-Rosset, W., Vermorel, M., Doreau, M., Tisserand, J. L. and Andrieu, J. 1994. The French horse feed evaluation systems and recommended allowances for energy and protein. Livestock Production Science 40: 3656.Google Scholar
Medina, B., Girard, I. D., Jacotot, E. and Julliand, V. 2002. Effect of a preparation of Saccharomyces cerevisiae on microbial profile and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet. Journal of Animal Science 80: 26002609.Google Scholar
Meyer, H., Coenen, M. and Probst, D. 1986. Beiträge zur verdauungsphysiologie des pferdes 14. Futtereinspeichelung und -passage im kopfdarm des pferdes. Journal of Animal Physiology and Animal Nutrition 56: 171183.CrossRefGoogle Scholar
Morris, V. K., Girvan, M., Hill, J. and Ball, A. S. 2002. Microbial diversity in the fore stomach of the horse. Proceedings of the 53rd European Association for Animal Production meeting, Cairo, Egypt, p. 260.Google Scholar
Murray, M. J. and Schusser, G. F. 1993. Measurement of 24-h gastric pH using an indwelling pH electrode in horses unfed, fed and treated with ranitidine. Equine Veterinary Journal 25: 417421.Google Scholar
Murray, S. M., Flickinger, E. A., Patil, A. R., Merchen, N. R., Brent, J. L. Jr and Fahey, G. C. Jr 2001 In vitro fermentation characteristics of native and processed cereal grains and potato starch using ileal chyme from dogs. Journal of Animal Science 79: 435444.Google Scholar
Sauvant, D., Chapoutot, P. and Archimède, H. 1994. La digestion des amidons par les ruminants et ses conséquences. INRA Productions Animales 7: 115124.Google Scholar
Wolter, R. and Chaabouni, A. 1979. Étude de la digestion de l’amidon chez le cheval par analyse du contenu digestif après abattage. Revue de Médecine Vétérinaire 130: 13451357.Google Scholar