Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-11T04:33:08.570Z Has data issue: false hasContentIssue false

Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis

Published online by Cambridge University Press:  09 March 2007

Samithamby Jeyaseelan*
Affiliation:
Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
Srinand Sreevatsan
Affiliation:
Department of Veterinary Preventive Medicine, Food Animal Health Research Program, The Ohio State University, Wooster, OH 44691, USA
Samuel K. Maheswaran
Affiliation:
Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
*
*Corresponding author: Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA E-mail: samithamby.jeyaseela@yale.edu

Abstract

Bovine pneumonic pasteurellosis continues to be a major respiratory disease in feedlot cattle despite the recent advances in our understanding of the underlying complexities of causation. The etiological agent, Mannheimia haemolytica, possesses several virulence factors, including capsule, outer membrane proteins, adhesins, neuraminidase, endotoxin and exotoxic leukotoxin. Accumulating scientific evidence implicates leukotoxin as the primary factor contributing to clinical presentation and lung injury associated with this disease. Unlike other virulence factors, leukotoxin shows cell-type- and species-specific effects on bovine leukocytes. Recent investigations have delineated the mechanisms underlying the target-cell-specificity of leukotoxin and how this contributes to the pathogenesis of lung damage. This review summarizes current understanding of the secretion, regulation, mechanisms of action and evolutionary diversity of leukotoxin of M. haemolytica. Understanding the precise molecular mechanisms of leukotoxin is critical for the development of more effective prophylactic and therapeutic strategies to control this complex disease.

Type
Research Article
Copyright
Copyright © CAB International 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, KM, Udoh, EA, Shewen, PE and Mellors, A (1992). A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves O-sialoglycoproteins. Infection and Immunity 60: 5662.CrossRefGoogle ScholarPubMed
Ambagala, TC, Ambagala, AP & Srikumaran, S (1999). The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. FEMS Microbiology Letters 179: 161167.Google ScholarPubMed
Ames, TR (1997). Dairy calf pneumonia. The disease and its impact. Veterinary Clinics of North America Food Animal Practice 13: 379391.CrossRefGoogle ScholarPubMed
Ames, TR, Markham, RJF, Asibo-Opuda, J.JLeininger, JR & Maheswaran, SK (1985). Pulmonary response to intratracheal challenge with Pasteurella haemolytica and Pasteurella multocida. Canadian Journal of Comparative Medicine 49: 395400.Google ScholarPubMed
Baluyut, CS, Simonson, RR, Bemrick, WJ and Maheswaran, SK (1981). Interaction of Pasteurella haemolytica with bovine neutrophils: identification and partial characterization of a cytotoxin. American Journal of Veterinary Research 42: 19201926.Google ScholarPubMed
Berggren, KA, Baluyut, CS, Simonson, RR, Bemrick, WJ and Maheswaran, SK (1981). The cytotoxic effects of Pasteurella haemolytica. American Journal of Veterinary Research 42: 13831388.Google ScholarPubMed
Bhakdi, S, Mackman, N, Nicaud, JM and Holland, IB (1986). Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infection and Immunity 52: 6369.CrossRefGoogle ScholarPubMed
Brown, JF, Leite, F and Czuprynski, CJ (1997). Binding of Pasteurella haemolytica leukotoxin to bovine leukocytes. Infection and Immunity 65: 37193724.CrossRefGoogle ScholarPubMed
Burrows, LL, Olah-Winfield, E and Lo, RY (1993). Molecular analysis of the leukotoxin determinants from Pasteurella haemolytica serotypes 1 to 16. Infection and Immunity 61: 50015007.CrossRefGoogle ScholarPubMed
Chang, YF, Young, R, Moulds, TL and Struck, DK (1989). Secretion of the Pasteurella leukotoxin by Escherichia coli. FEMS Microbiology Letters 51: 169173.CrossRefGoogle ScholarPubMed
Chang, YF, Ma, DP, Shi, J and Chengappa, MM (1993). Molecular characterization of a leukotoxin gene from a Pasteurella haemolytica-like organism, encoding a new member of the RTX toxin family. Infection and Immunity 61: 20892095.CrossRefGoogle ScholarPubMed
Clinkenbeard, KD and Upton, ML (1991). Lysis of bovine platelets by Pasteurella haemolytica leukotoxin. American Journal of Veterinary Research 52: 453457.CrossRefGoogle ScholarPubMed
Clinkenbeard, KD, Mosier, DA andConfer, AW (1989). Transmembrane pore size and role of cell swelling in cytotoxicity caused by Pasteurella haemolytica leukotoxin. Infection and Immunity 57: 420425.CrossRefGoogle ScholarPubMed
Clinkenbeard, KD, Clark, CR, Morton, RJ, Panciera, RJ, Mosier, DA and Confer, AW (1992). Role of Pasteurella haemolytica leukotoxin in the virulence and immunity in shipping fever pneumonia. Compendium on Continuing Education for the Practicing Veterinarian 14: 12491262.Google Scholar
Clinkenbeard, KD, Clark, CR, Hague, CM, Clinkenbeard, P, Srikumaran, S and Morton, RJ (1994) Pasteurella haemolytica leukotoxin-induced synthesis of eicosanoids by bovine neutrophils in vitro. Journal of Leukocyte Biology 56: 644649.CrossRefGoogle ScholarPubMed
Confer, AW, Panciera, RJ and Mosier, DA (1988). Bovine pneumonic pasteurellosis: immunity to Pasteurella haemolytica. Journal of American Veterinary Medical Association 193: 13081313.Google ScholarPubMed
Confer, AW, Simons, KR, Panciera, RJ, Mort, AJ and Mosier, DA (1989). Serum antibody response to carbohydrate antigens of Pasteurella haemolytica serotype 1: relation to experimentally induced bovine pneumonic pasteurellosis. American Journal of Veterinary Research 50: 98105.Google ScholarPubMed
Confer, AW, Panciera, RJ, Clinkenbeard, KD and Mosier, DA (1990). Molecular aspects of virulence of Pasteurella haemolytica. Canadian Journal of Veterinary Research 54: S48S52.Google ScholarPubMed
Conlon, PD, Schewan, PE, Donnelly, SF and Burger, JP (1990). Effects of Pasteurella haemolytica A1 culture supernatant on mechanisms controlling bovine alveolar macrophage oxygen radical production. Canadian Journal of Veterinary Research 54: 232237.Google ScholarPubMed
Conlon, JAR, Shewan, PE and Lo, RYC (1991). Efficacy of recombinant leukotoxin in protection against pneumonic challenge with live Pasteurella haemolytica. A1. Infection and Immunity 59: 587591.CrossRefGoogle ScholarPubMed
Coote, JG (1992). Structural and functional relationships among RTX toxin determinants of Gram-negative bacteria. FEMS Microbiology Reviews 88: 137162.CrossRefGoogle Scholar
Cortajarena, AL, Goni, FM & Ostolaza, H (2001). Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. Journal of Biological Chemistry 276: 1251312519.CrossRefGoogle ScholarPubMed
Cruz, WT, Young, R, Chang, YF and Struck, DK (1990). Deletion analysis resolves cell-binding and lytic domains of the Pasteurella leukotoxin. Molecular Microbiology 4: 19331939.CrossRefGoogle ScholarPubMed
Cudd, L, Clarke, C, Clinkenbeard, K, Shelton, M, Clinkenbeard, P and Murphy, G (1999). Role of intracellular calcium in Pasteurella haemolytica leukotoxin-induced bovine neutrophil leukotriene B4 production and plasma membrane damage. FEMS Microbiology Letters 172: 123129.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Hamilton, HL and Noel, EJ (1987). Ingestion and killing of Pasteurella haemolytica A1 by bovine neutrophils in vitro. Veterinary Microbiology 14: 6174.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Noel, EJ and Adlam, C (1989). Modulation of bovine neutrophil antibacterial activities by Pasteurella haemolytica A1 purified capsular polysaccharide. Microbial Pathogenesis 6: 1 3341.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Noel, EF, Ortiz-Carranza, O and Srikumaran, S (1991). Activation of bovine neutrophils by partially purified Pasteurella haemolytica leukotoxin. Infection and Immunity 59: 31263133.CrossRefGoogle ScholarPubMed
Davies, RL, Arkinsaw, S and Selander, RK (1997). Evolutionary genetics of Pasteurella haemolytica isolates recovered from cattle and sheep. Infection and Immunity 65: 35853593.CrossRefGoogle ScholarPubMed
Davies, RL, Whittam, TS and Selander, RK (2001). Sequence diversity and molecular evolution of the leukotoxin (lktA) gene in bovine and ovine strains of Mannheimia (Pasteurella) haemolytica. Journal of Bacteriology 183: 13941404.CrossRefGoogle ScholarPubMed
Davies, RL, Campbell, S and Whittam, TS (2002). Mosaic structure and molecular evolution of the leukotoxin operon (lktCABD) in Mannheimia (Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. Journal of Bacteriology 184: 266277.CrossRefGoogle ScholarPubMed
Deneer, HG and Potter, AA (1989). Iron-repressible outer-membrane proteins of Pasteurella haemolytica. Journal of General Microbiology 135: 435443.Google ScholarPubMed
Deshpande, MS, Ambagala, TC, Ambagala, AP, Kehrli, ME and Srikumaran, S (2002). Bovine CD 18 is necessary and sufficient to mediate Mannheimia (Pasteurella) haemolytica leukotoxin-induced cytolysis. Infection and Immunity 70: 50585064.CrossRefGoogle Scholar
Dyer, RM (1982). The bovine respiratory disease complex: a complex interaction of host, environment and infectious factors. Compendium on Continuing Education for the Practicing Veterinarian 4: S296S304.Google Scholar
Fedorova, ND and Highlander, SK (1997). Generation of targeted nonpolar gene insertions and operon fusions in Pasteurella haemolytica and creation of a strain that produces and secretes inactive leukotoxin. Infection and Immunity 65: 25932598.CrossRefGoogle ScholarPubMed
Flaherty, SF, Golenbock, DT, Milham, FH and Ingalls, RR (1997). CD11/CD18 leukocyte integrins: new signaling receptors for bacterial endotoxin. Journal of Surgical Research 73: 8589.CrossRefGoogle ScholarPubMed
Gentry, MJ, Confer, AW and Panciera, RJ (1985). Serum neutralization of cytotoxin from Pasteurella haemolytica ST1 and resistance to experimental bovine pneumonic pasteurellosis. Veterinary Immunology and Immunopathology 9: 239250.CrossRefGoogle Scholar
Gentry, MJ, Confer, AW, Weinberg, ED and Homer, JT (1986). Cytotoxin (leukotoxin) production by Pasteurella haemolytica: requirement for an iron-containing compound. American Journal of Veterinary Research 47: 19191923.Google ScholarPubMed
Gentschev, I and Goebel, W (1992). Topological and functional studies on HlyB of Escherichia coli. Molecular and General Genetics 232: 4048.CrossRefGoogle ScholarPubMed
Gerbig, DF, Walker, RD, Baker, JC, Foster, JS and Moore, RN (1989). Calcium ion involvement in the action of Pasteurella haemolytica leukotoxin. Veterinary Microbiology 19: 325335.CrossRefGoogle ScholarPubMed
Gonzalez, C and Maheswaran, SK (1993). The role of induced virulence factors produced by Pasteurella haemolytica in the pathogenesis of bovine pneumonic pasteurellosis: review and hypothesis. British Veterinary Journal 149: 183193.CrossRefGoogle Scholar
Gonzalez, CT, Maheswaran, SK and Murtaugh, MP (1995). Pasteurella haemolytica serotype 2 contains the gene for a noncapsular serotype 1-specific antigen. Infection and Immunity 63: 13401348.CrossRefGoogle ScholarPubMed
Griffin, D (1997). Economic impact associated with respiratory disease in beef cattle. Veterinary Clinics of North America Food Animal Practice 13: 367377.CrossRefGoogle ScholarPubMed
Henricks, PAJ, Binkghorst, GJ, Drijver, AA and Nijkamp, FP (1992). Pasteurella haemolytica leukotoxin enhances production of leukotriene B4 and 5-hydroxyeicosatetraenoic acid by bovine polymorphonuclear leukocytes. Infection and Immunity 60: 32383243.CrossRefGoogle ScholarPubMed
Highlander, SK, Chidambaram, M, Engler, MJ and Weinstock, GM (1989). DNA sequence of the Pasteurella haemolytica leukotoxin gene cluster. DNA 8: 1528.CrossRefGoogle ScholarPubMed
Highlander, SK, Fedorova, ND, Dusek, DM, Panciera, R, Alvarez, LE and Rinehart, C (2000). Inactivation of Pasteurella (Mannheimia) haemolytica leukotoxin causes partial attenuation of virulence in a calf challenge model. Infection and Immunity 68: 39163922.CrossRefGoogle Scholar
Hormozi, K, Parton, R and Coote, J (1998). Target cell specificity of the Pasteurella haemolytica leukotoxin is unaffected by the nature of the fatty-acyl group used to activate the toxin in vitro. FEMS Microbiology Letters 169: 139145.CrossRefGoogle ScholarPubMed
Hsuan, SL, Kannan, MS, Jeyaseelan, S, Prakash, YS, Sieck, GC and Maheswaran, SK (1998). Pasteurella haemolytica A1-derived leukotoxin and endotoxin induce intracellular calcium elevation in bovine alveolar macrophages by different signaling pathways. Infection and Immunity 66: 28362844.CrossRefGoogle ScholarPubMed
Hsuan, SL, Kannan, MS, Jeyaseelan, S, Prakash, YS, Malazdrewich, C, Abrahamsen, MS, Sieck, GC and Maheswaran, SK (1999). Pasteurella haemolytica leukotoxin and endotoxin induced cytokine gene expression in bovine alveolar macrophages requires NF-kB activation and intracellular calcium elevation. Microbial Pathogenesis 26: 263273.CrossRefGoogle Scholar
Iovane, G, Galdiero, M, Vitiello, M and De Martino, L (1998). Effect of Pasteurella haemolytica outer membrane proteins on bovine neutrophils. FEMS Immunology and Medical Microbiology 20: 2936.CrossRefGoogle ScholarPubMed
Iwase, M, Lally, ET, Berthold, P, Korchak, HM and Taichman, NS (1990). Effects of cations and osmotic protectants on cytolytic activity of Actinobacillus actinomycetemcomitans leukotoxin. Infection and Immunity 58: 17821788.CrossRefGoogle ScholarPubMed
Jaramillo, L, Diaz, F, Hernandez, P, Debray, H, Trigo, F, Mendoza, G and Zenteno, E (2000). Purification and characterization of an adhesin from Pasteurella haemolytica. Glycobiology 10: 3137.CrossRefGoogle ScholarPubMed
Jeyaseelan, S, Hsuan, SL, Kannan, MS, Walcheck, B, Wang, JF, Kehrli, ME, Lally, ET, Sieck, GC and Maheswaran, SK (2000). Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infection and Immunity 68: 7279.CrossRefGoogle ScholarPubMed
Jeyaseelan, S, Kannan, MS, Briggs, RE, Thumbikat, P and Maheswaran, SK (2001). Mannheimia haemolytica leukotoxin activates a nonreceptor tyrosine kinase signaling cascade in bovine leukocytes, which induces biological effects. Infection and Immunity 69: 61316139.CrossRefGoogle ScholarPubMed
Jeyaseelan, S, Kannan, MS, Hsuan, SL, Singh, AK, Walseth, TF and Maheswaran, SK (2001). Pasteurella (Mannheimia) haemolytica leukotoxin-induced cytolysis of bovine leukocytes: role of arachidonic acid and its regulation. Microbial Pathogenesis 30: 5969.CrossRefGoogle ScholarPubMed
Kaehler, KL, Markham, RJ, Muscoplat, CE and Johnson, DW (1980). Evidence of species specificity in the cytocidal effects of Pasteurella haemolytica. Infection and Immunity 30: 615616.CrossRefGoogle ScholarPubMed
Kitchens, RL (2000). Role of CD14 in cellular recognition of bacterial lipopolysaccharides. Chemical Immunology 74: 6182.Google ScholarPubMed
Koronakis, V and Hughes, C (1996). Synthesis, maturation and export of the E. coli hemolysin. Medical Microbiology and Immunology 185: 6571.CrossRefGoogle ScholarPubMed
Koronakis, V, Cross, M and Hughes, C (1989). Transcription anti-termination in an Escherichia coli haemolysin operon is directed progressively by cis-acting DNA sequences upstream of the promoter region. Molecular Microbiology 3: 13971404.CrossRefGoogle Scholar
Koronakis, V, Hughes, C and Koronakis, E (1993). ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Molecular Microbiology 8: 11631175.CrossRefGoogle ScholarPubMed
Koronakis, E, Hughes, C, Milisav, I and Koronakis, V (1995). Protein exporter function and in vitro ATPase activity are correlated in ABC-domain mutants of HlyB. Molecular Microbiology 16: 8796.CrossRefGoogle ScholarPubMed
Koronakis, V, Li, J, Koronakis, E and Stauffer, K (1997). Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Molecular Microbiology 23: 617626.CrossRefGoogle ScholarPubMed
Lafleur, RL, Abrahamsen, MS and Maheswaran, SK (1998). The biphasic mRNA expression pattern of bovine interleukin-8 in Pasteurella haemolytica lipopolysaccharide-stimulated alveolar macrophages is primarily due to tumor necrosis factor alpha. Infection and Immunity 66: 40874092.CrossRefGoogle ScholarPubMed
Lafleur, RL, Maladzrewich, C, Jeyaseelan, S, Bleifield, E, Abrahamsen, MS and Maheswaran, SK (2001). Lipopolysaccharide enhances cytolysis and inflammatory cytokine induction in bovine alveolar macrophages exposed to Mannheimia haemolytica leukotoxin. Microbial Pathogenesis 30: 347357.CrossRefGoogle ScholarPubMed
Lally, ET, Golub, EE and Kieba, IR (1994). Identification and immunological characterization of the domain of Actinobacillus actinomycetemcomitans leukotoxin that determines its specificity for human target cells. Journal of Biological Chemistry 269: 3128931295.CrossRefGoogle ScholarPubMed
Lally, ET, Kieba, IR, Sato, A, Green, CL, Rosenbloom, J, Korostoff, J, Wang, JF, Shenker, BJ, Ortlepp, S, Robinson, MK and Billings, PC (1997). RTX toxins recognize a b2 integrin on the surface of human target cells. Journal of Biological Chemistry 272: 3046330469.CrossRefGoogle Scholar
Lalonde, G, McDonald, TV, Gardner, P and O'Hanley, PD (1989). Identification of a hemolysin from Actinobacillus pleuropneumoniae and characterization of its channel properties in planar phospholipid bilayers. Journal of Biological Chemistry 264: 1355913564.CrossRefGoogle ScholarPubMed
Leite, F, Brown, JF, Sylte, MJ, Briggs, RE and Czuprynski, CJ (2000). Recombinant bovine interleukin-1beta amplifies the effects of partially purified Pasteurella haemolytica leukotoxin on bovine neutrophils in a beta(2)-integrin-dependent manner. Infection and Immunity 68: 55815586.CrossRefGoogle Scholar
Leite, F, Sylte, MJ, O'Brien, S, Schultz, R, Peek, S, van Reeth, K and Czuprynski, CJ (2001). Effect of experimental infection of cattle with bovine herpesvirus-1 (BHV-1) on the ex vivo interaction of bovine leukocytes with Mannheimia (Pasteurella) haemolytica leukotoxin. Veterinary Immunology and Immunopathology 84: 97110.CrossRefGoogle Scholar
Li, J and Clinkenbeard, KD (1999). Lipopolysaccharide complexes with Pasteurella haemolytica leukotoxin. Infection and Immunity 67: 29202927.CrossRefGoogle ScholarPubMed
Li, J, Clinkenbeard, KD and Ritchey, JW (1999). Bovine CD 18 identified as a species-specific receptor for Pasteurella haemolytica leukotoxin. Veterinary Microbiology 67: 9197.CrossRefGoogle Scholar
Lillie, LE (1974). The bovine respiratory disease complex. Canadian Veterinary Journal 15: 233242.Google ScholarPubMed
Lo, RY, Strathdee, CA and Shewen, PE (1987). Nucleotide sequence of the leukotoxin genes of Pasteurella haemolytica A1. Infection and Immunity 55: 19871996.CrossRefGoogle ScholarPubMed
Lo, RY (1990). Molecular characterization of cytotoxins produced by Haemophilus, Actinobacillus, Pasteurella. Canadian Journal of Veterinary Research 54: S33S35.Google ScholarPubMed
Ludwig, A, Schmid, R, Benz, R and Goebel, W (1991). Mutations affecting pore formation by haemolysin from Escherichia coli. Molecular and General Genetics 226: 198208.CrossRefGoogle ScholarPubMed
Ludwig, A, Garcia, F, Bauer, S, Jarchau, T, Benz, R, Hoppe, J and Goebel, W (1996). Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. Journal of Bacteriology 178: 54225430.CrossRefGoogle ScholarPubMed
Mahasreshti, PJ, Murphy, GL, Wyckoff, JH, Farmer, S, Hancock, RE and Confer, AW (1997). Purification and partial characterization of the OmpA family of proteins of Pasteurella haemolytica. Infection and Immunity 65: 211218.CrossRefGoogle ScholarPubMed
Maheswaran, SK, Berggren, KA, Simonson, RR, Ward, GE and Muscoplat, CC (1980). Kinetics of interaction and fate of Pasteurella haemolytica in bovine macrophages. Infection and Immunity 30: 254262.CrossRefGoogle Scholar
Maheswaran, SK, Weiss, DJ, Kannan, MS, Townsend, EL, Reddy, KR, Whiteley, LO and Srikumaran, S (1992). Effects of Pasteurella haemolytica A1 leukotoxin on bovine neutrophils: degranulation and generation of oxygen-derived free radicals. Veterinary Immunology and Immunopathology 33: 5168.CrossRefGoogle ScholarPubMed
Maheswaran, SK, Kannan, MS, Weiss, DJ, Reddy, KR, Townsend, EL, Yoo, HS, Lee, BW and Whiteley, LO (1993). Enhancement of neutrophil-mediated injury to bovine pulmonary endothelial cells by Pasteurella haemolytica leukotoxin. Infection and Immunity 61: 26182625.CrossRefGoogle ScholarPubMed
Marciel, AM and Highlander, SK (2002). Use of operon fusions in Mannheimia haemolytica to identify environmental and cis-acting regulators of leukotoxin transcription. Infection and Immunity 69: 62316239.CrossRefGoogle Scholar
McVey, DS, Loan, RW, Purdy, CW and Shuman, WJ (1990). Specificity of bovine serum antibody to capsular carbohydrate antigens from Pasteurella haemolytica. Journal of Clinical Microbiology 28: 11511158.CrossRefGoogle ScholarPubMed
Medzhitov, R, Preston-Hurlburt, P and Janeway, CA Jr (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394397.CrossRefGoogle ScholarPubMed
Milligan, TW, Baker, CJ, Straus, DC and Mattingly, SJ (1978). Association of elevated levels of extracellular neuraminidase with clinical isolates of type III group B streptococci. Infection and Immunity 21: 738746.CrossRefGoogle ScholarPubMed
Morck, DW, Raybould, TJ, Acres, SD, Babiuk, LA, Nelligan, J and Costerton, JW (1987). Electron microscopic description of glycocalyx and fimbriae on the surface of Pasteurella haemolytica-A1. Canadian Journal of Veterinary Research 51: 8388.Google ScholarPubMed
Morck, DW, Watts, TC, Acres, SD and Costerton, JW (1988). Electron microscopic examination of cells of Pasteurella haemolytica A1 in experimentally infected cattle. Canadian Journal of Veterinary Research 53: 343348.Google Scholar
Morck, DW, Ellis, BD, Domingue, PA, Olson, ME and Costerton, JW (1991). In vivo expression of iron regulated outer-membrane proteins in Pasteurella haemolytica-A1. Microbial Pathogenesis 11: 373378.CrossRefGoogle ScholarPubMed
Morton, RJ, Panciera, RJ, Fulton, RW, Frank, GH, Ewing, SA, Homer, JT and Confer, AW (1995). Vaccination of cattle with outer membrane protein-enriched fractions of Pasteurella haemolytica and resistance against experimental challenge exposure. American Journal of Veterinary Research 56: 875879.CrossRefGoogle ScholarPubMed
Mosier, DA (1997). Bacterial pneumonia. Veterinary Clinics of North America Food Animal Practice 13: 483493.CrossRefGoogle ScholarPubMed
Mosier, DA, Simons, KR, Confer, AW, Panciera, RJ and Clinkenbeard, KD (1989). Pasteurella haemolytica antigens associated with resistance to pneumonic pasteurellosis. Infection and Immunity 57: 711716.CrossRefGoogle ScholarPubMed
Pandher, K and Murphy, GL (1996). Genetic and immunological analyses of a 38 kDa surface-exposed lipoprotein of Pasteurella haemolytica A1. Veterinary Microbiology 51: 331341.CrossRefGoogle ScholarPubMed
Paulsen, DB, Confer, AW, Clinkenbeard, KD and Mosier, DA (1990). Pasteurella haemolytica lipopolysaccharide-induced arachidonic acid release from and neutrophil adherence to bovine pulmonary artery endothelial cells. American Journal of Veterinary Research 51: 16351639.CrossRefGoogle ScholarPubMed
Pellett, S and Welch, RA (1996). Escherichia coli hemolysin mutants with altered target cell specificity. Infection and Immunity 64: 30813087.CrossRefGoogle ScholarPubMed
Potter, AA, Ready, K and Gilchrist, J (1988). Purification of fimbriae from Pasteurella haemolytica A-1. Microbial Pathogenesis 4: 311316.CrossRefGoogle ScholarPubMed
Saadati, M, Gibbs, HA, Parton, R and Coote, JG (1997). Characterisation of the leukotoxin produced by different strains of Pasteurella haemolytica. Journal of Medical Microbiology 46: 276284.CrossRefGoogle ScholarPubMed
Saban, R, Broadstone, RV, Haak-Frendscho, M, Skoyen, S, Fialkowski, J, Maheswaran, SK, Bjorling, DE and Czuprynski, C (1997). Effects of Pasteurella haemolytica leukotoxin and lipopolysaccharide on histamine, prostanoid and leukotriene release by bovine lung parenchyma in vitro. American Journal of Veterinary Research 58: 12271231.CrossRefGoogle ScholarPubMed
Schulein, R, Gentschev, I, Mollenkopf, HJ and Goebel, W (1992). A topological model for the haemolysin translocator protein HlyD. Molecular and General Genetics 234: 155163.CrossRefGoogle ScholarPubMed
Shanley, TP, Warner, RL and Ward, PA (1995). The role of cytokines and adhesion molecules in the development of inflammatory injury. Molecular Medicine Today 1: 4045.CrossRefGoogle ScholarPubMed
Shenker, BJ, Vitale, LA, Keiba, I, Harrison, G, Berthold, P, Golub, E and Lally, ET (1994). Flow cytometric analysis of the cytotoxic effects of Actinobacillus actinomycetemcomitans leukotoxin on human natural killer cells. Journal of Leukocyte Biology 55: 153160.CrossRefGoogle ScholarPubMed
Shewen, PE and Wilkie, BN (1982). Cytotoxin of Pasteurella haemolytica acting on bovine leukocytes. Infection and Immunity 35: 9194.CrossRefGoogle ScholarPubMed
Shewen, PE and Wilkie, BN (1983). Pasteurella haemolytica cytotoxin: production by recognized serotypes and neutralization by type-specific rabbit antisera. American Journal of Veterinary Research 44: 715719.Google ScholarPubMed
Shewen, PE and Wilkie, BN (1985). Evidence for the Pasteurella haemolytica cytotoxin as a product of actively growing bacteria. American Journal of Veterinary Research 46: 12121214.Google ScholarPubMed
Soloaga, A, Veiga, MP, Garcia-Segura, LM, Ostolaza, H, Brasseur, R and Goni, FM (1999). Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Molecular Microbiology 31: 10131024.CrossRefGoogle Scholar
Sreevatsan, S, Ames, TR, Werdin, RE, Yoo, HS and Maheswaran, SK (1996). Evaluation of three experimental subunit vaccines against pneumonic pasteurellosis in cattle. Vaccine 14: 147155.CrossRefGoogle ScholarPubMed
Srinand, S, Hsuan, SL, Yoo, HS, Maheswaran, SK, Ames, TR and Werdin, RE (1996). Comparative evaluation of antibodies induced by commercial Pasteurella haemolytica vaccines using solid phase immunoassays. Veterinary Microbiology 49: 181195.CrossRefGoogle ScholarPubMed
Srinand, S, Maheswaran, SK, Ames, TR, Werdin, RE and Hsuan, SL (1996). Evaluation of efficacy of three commercial vaccines against experimental bovine pneumonic pasteurellosis. Veterinary Microbiology 52: 8189.CrossRefGoogle ScholarPubMed
Stanley, P, Koronakis, V and Hughes, C (1991). Mutational analysis supports a role for multiple structural features in the C-terminal secretion signal of Escherichia coli haemolysin. Molecular Microbiology 5: 23912403.CrossRefGoogle ScholarPubMed
Stanley, P, Koronakis, V and Hughes, C (1998). Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiology and Molecular Biology Reviews 62: 309333.CrossRefGoogle ScholarPubMed
Stevens, P and Czuprynski, CJ (1995). Dissociation of cytolysis and monokine release by bovine mononuclear phagocytes incubated with Pasteurella haemolytica partially purified leukotoxin and lipopolysaccharide. Canadian Journal of Veterinary Research 59: 110117.Google ScholarPubMed
Stevens, P and Czuprynski, CJ (1996). Pasteurella haemolytica leukotoxin induces bovine leukocytes to undergo morphologic changes consistent with apoptosis in vitro. Infection and Immunity 64: 26872694.CrossRefGoogle ScholarPubMed
Strathdee, CA and Lo, EY (1981). Extensive homology between the leukotoxin of Pasteurella haemolytica AI and the a-hemolysin of Escherichia coli. Infection and Immunity 55: 32333236.CrossRefGoogle Scholar
Strathdee, CA and Lo, RY (1989). Cloning, nucleotide sequence, and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. Journal of Bacteriology 171: 916928.CrossRefGoogle ScholarPubMed
Strathdee, CA and Lo, RY (1989). Regulation of expression of the Pasteurella haemolytica leukotoxin determinant. Journal of Bacteriology 171: 59555962.CrossRefGoogle ScholarPubMed
Sun, Y, Clinkenbeard, KD, Cudd, LA, Clarke, CR and Clinkenbeard, PA (1999). Correlation of Pasteurella haemolytica leukotoxin binding with susceptibility to intoxication of lymphoid cells from various species. Infection and Immunity 67: 62646269.CrossRefGoogle ScholarPubMed
Sutherland, AD (1985). Effects of Pasteurella haemolytica cytotoxin on ovine peripheral blood leucocytes and lymphocytes obtained from gastric lymph. Veterinary Microbiology 10: 431438.CrossRefGoogle ScholarPubMed
Taichman, NS, Simpson, DL, Sakurada, S, Cranfield, M, DiRienzo, J and Slots, J (1987). Comparative studies on the biology of Actinobacillus actinomycetemcomitans leukotoxin in primates. Oral Microbiology and Immunology 2: 97104.CrossRefGoogle ScholarPubMed
Tapping, RI and Tobias, PS (2000). Soluble CD 14-mediated cellular responses to lipopolysaccharide. Chemical Immunology 74: 108121.Google Scholar
Tatum, FM, Briggs, RE, Srinand, S, Zehr, ES, Hsuan, SL, Whiteley, LO, Ames, TR and Maheswaran, SK (1998). Construction of an isogenic leukotoxin deletion mutant of Pasteurella haemolytica serotype 1: characterization and virulence. Microbial Pathogenesis 24: 3746.CrossRefGoogle ScholarPubMed
Thanabalu, T, Koronakis, E, Hughes, C and Koronakis, V (1998). Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO Journal 17: 64876496.CrossRefGoogle Scholar
Ulevitch, RJ and Tobias, PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annual Review of Immunology 13: 437457.CrossRefGoogle ScholarPubMed
Wang, JF, Kieba, IR, Korostoff, J, Guo, TL, Yamaguchi, N, Rozmiarek, H, Billings, PC, Shenker, BJ and Lally, ET (1998). Molecular and biochemical mechanisms of Pasteurella haemolytica leukotoxin-induced cell death. Microbial Pathogenesis 25: 317331.CrossRefGoogle ScholarPubMed
Wang, Z, Clarke, C and Clinkenbeard, K (1998). Pasteurella haemolytica leukotoxin-induced increase in phospholipase A2 activity in bovine neutrophils. Infection and Immunity 66: 18851890.CrossRefGoogle ScholarPubMed
Welch, RA (1991). Pore-forming cytolysins of Gram-negative bacteria. Molecular Microbiology 5: 521528.CrossRefGoogle ScholarPubMed
Welch, RA, Bauer, ME, Kent, AD, Leeds, JA, Moayeri, M, Regassa, LB and Swenson, DL (1995). Battling against host phagocytes: the wherefore of the RTX family of toxins. Infectious Agents and Diseases 4: 254272.Google ScholarPubMed
Westrop, G, Hormozi, K, da Costa, N, Parton, R and Coote, J (1997). Structure–function studies of the adenylate cyclase toxin of Bordetella pertussis and the leukotoxin of Pasteurella haemolytica by heterologous C protein activation and construction of hybrid proteins. Journal of Bacteriology 179: 871879.CrossRefGoogle ScholarPubMed
Whiteley, LO, Maheswaran, SK, Weiss, DJ and Kannan, MS (1992). Pasteurella haemolytica A1 and bovine respiratory disease: pathogenesis. Journal of Veterinary Internal Medicine 6: 1122.CrossRefGoogle ScholarPubMed
Wikse, SE (1985). Feedlot cattle pneumonia. Veterinary Clinics of North America Food Animal Practice 1: 289310.CrossRefGoogle ScholarPubMed
Wohlgemuth, K and Herrick, JB (1987). Bovine respiratory disease: an overview of costs, causes, and control. Norden News 62: 3236.Google Scholar
Yoo, HS, Maheswaran, SK, Lin, G, Townsend, EL and Ames, TR (1995). Induction of inflammatory cytokines in bovine alveolar macrophages following stimulation with Pasteurella haemolytica lipopolysaccharide. Infection and Immunity 63: 381388.CrossRefGoogle ScholarPubMed
Yoo, HS, Rajagopal, BS, Maheswaran, SK and Ames, TR (1995). Purified Pasteurella haemolytica leukotoxin induce expression of inflammatory cytokines from bovine alveolar macrophages. Microbial Pathogenesis 18: 237254.Google ScholarPubMed
Yoo, HS, Rutherford, MS, Maheswaran, SK and Ames, TR (1996). Induction of nitric oxide production by bovine alveolar macrophages in response to Pasteurella haemolytica A1. Microbial Pathogenesis 20: 361375.CrossRefGoogle ScholarPubMed
Zhang, F, Greig, DI and Ling, V (1993). Functional replacement of the hemolysin A transport signal by a different primary sequence. Proceedings of the National Academy of Sciences of the United States of America 90: 42114215.CrossRefGoogle ScholarPubMed