Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:04:51.571Z Has data issue: false hasContentIssue false

Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics

Published online by Cambridge University Press:  05 November 2008

Yongming Sang
Affiliation:
Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
Frank Blecha*
Affiliation:
Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
*
*Corresponding author. E-mail: blecha@vet.k-state.edu

Abstract

Antimicrobial peptides (AMPs) are ubiquitous, gene-encoded natural antibiotics that have gained recent attention in the search for new antimicrobials to combat infectious disease. In multicellular organisms, AMPs, such as defensins and cathelicidins, provide a coordinated protective response against infection and are a principal component of innate immunity in vertebrates. In unicellular organisms, AMPs, such as bacteriocins, function to suppress competitor species. Because many AMPs kill bacteria by disruption of membrane integrity and are thus thought to be less likely to induce resistance, AMPs are being extensively evaluated as novel antimicrobial drugs. This review summarizes and discusses the antibiotic properties of AMPs highlighting their potential as alternatives to conventional antibiotics.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrès, E and Dimarcq, JL (2005). Clinical development of antimicrobial peptides. International Journal of Antimicrobial Agents 25: 448449.CrossRefGoogle ScholarPubMed
Bansal, PS, Torres, AM, Crossett, B, Wong, KK, Koh, JM, Geraghty, DP, Vandenberg, JI and Kuchel, PW (2008). Substrate specificity of platypus venom l-to-d-peptide isomerase. Journal of Biological Chemistry 283: 89698975.CrossRefGoogle ScholarPubMed
Barbeta, BL, Marshall, AT, Gillon, AD, Craik, DJ and Anderson, MA (2008). Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proceedings of the National Academy of Science, USA 105: 12211225.CrossRefGoogle ScholarPubMed
Bechinger, B (1997). Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. Journal of Membrane Biology 156: 197211.CrossRefGoogle ScholarPubMed
Beutler, B (2004). Innate immunity: an overview. Molecular Immunology 40: 845859.CrossRefGoogle ScholarPubMed
Boman, HG (2003). Antibacterial peptides: basic facts and emerging concepts. Journal of Internal Medicine 254: 197215.CrossRefGoogle ScholarPubMed
Brogden, KA (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3: 238250.CrossRefGoogle ScholarPubMed
Chen, HL, Wang, LC, Chang, CH, Yen, CC, Cheng, WT, Wu, SC, Hung, CM, Kuo, MF and Chen, CM (2008). Recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonatal mice from a lethal challenge with enterovirus type 71. Vaccine 26: 891898.CrossRefGoogle ScholarPubMed
Cheung, QC, Turner, PV, Song, C, Wu, D, Cai, HY, MacInnes, JI and Li, J (2008). Enhanced resistance to bacterial infection in protegrin-1 transgenic mice. Antimicrobial Agents and Chemotherapy 52: 18121819.CrossRefGoogle ScholarPubMed
Colgrave, ML, Kotze, AC, Huang, YH, O'Grady, J, Simonsen, SM and Craik, DJ (2008). Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47: 55815589.CrossRefGoogle ScholarPubMed
Cotter, PD, Hill, C and Ross, RP (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology 3: 777788.CrossRefGoogle ScholarPubMed
Crispie, F, Twomey, D, Flynn, J, Hill, C, Ross, P and Meaney, W (2005). The lantibiotic lacticin 3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus. Journal of Dairy Research 72: 159167.CrossRefGoogle Scholar
Draper, LA, Ross, RP, Hill, C and Cotter, PD (2008). Lantibiotic immunity. Current Protein and Peptide Science 9: 3949.Google ScholarPubMed
Duclohier, H (2007). Peptaibiotics and peptaibols: an alternative to classical antibiotics? Chemistry and Biodiversity 4: 10231026.CrossRefGoogle ScholarPubMed
Dufour, A, Hindré, T, Haras, D and Le Pennec, JP (2007). The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiology Reviews 31: 134167.CrossRefGoogle Scholar
De Vuyst, L and Leroy, F (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology 13: 194199.Google ScholarPubMed
Duquesne, S, Destoumieux-Garzón, D, Peduzzi, J and Rebuffat, S (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports 24: 708734.CrossRefGoogle ScholarPubMed
Field, D, Connor, PM, Cotter, PD, Hill, C and Ross, RP (2008). The generation of Nisin variants with enhanced activity against specific Gram positive pathogens. Molecular Microbiology 69: 218230.CrossRefGoogle ScholarPubMed
Ganz, T (2003). Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology 3: 710720.CrossRefGoogle ScholarPubMed
Gardiner, GE, Rea, MC, O'Riordan, B, O'Connor, P, Morgan, SM, Lawlor, PG, Lynch, PB, Cronin, M, Ross, RP and Hill, C (2007). Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Applied and Environmental Microbiology 73: 71037109.CrossRefGoogle ScholarPubMed
Giacometti, A, Cirioni, O, Kamysz, W, D'Amato, G, Silvestri, C, Del Prete, MS, Łukasiak, J and Scalise, G (2003). Comparative activities of cecropin A, melittin, and cecropin A–melittin peptide CA(1–7)M(2–9) NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides 24: 13151318.CrossRefGoogle ScholarPubMed
Gordon, YJ, Romanowski, EG and McDermott, AM (2005). A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Current Eye Research 30: 505515.CrossRefGoogle ScholarPubMed
Gunn, JS (2008). The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends in Microbiology 16: 284290.CrossRefGoogle ScholarPubMed
Hale, JD and Hancock, RE (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Review of Anti-infective Therapy 5: 951959.CrossRefGoogle ScholarPubMed
Hammami, R, Zouhir, A, Ben Hamida, J and Fliss, I (2007). BACTIBASE: a web-accessible database for bacteriocin characterization. BMC Microbiology 7: 89.CrossRefGoogle ScholarPubMed
Han, ZS, Li, QW, Zhang, ZY, Yu, YS, Xiao, B, Wu, SY, Jiang, ZL, Zhao, HW, Zhao, R and Li, J (2008). Adenoviral vector mediates high expression levels of human lactoferrin in the milk of rabbits. Journal of Microbiology and Biotechnology 18: 153159.Google ScholarPubMed
Hancock, RE and Sahl, HG (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24: 15511557.CrossRefGoogle ScholarPubMed
Hoskin, DW and Ramamoorthy, A (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta 1778: 357375.CrossRefGoogle ScholarPubMed
Huang, HW (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta 1758: 12921302.CrossRefGoogle ScholarPubMed
Humphrey, BD, Huang, N and Klasing, KC (2002). Rice expressing lactoferrin and lysozyme has antibiotic-like properties when fed to chicks. Journal of Nutrition 132: 12141218.Google ScholarPubMed
Hyvönen, P, Suojala, L, Orro, T, Haaranen, J, Simola, O, Røntved, C and Pyörälä, S (2006). Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infection and Immunity 74: 62066212.CrossRefGoogle Scholar
Ireland, DC, Wang, CK, Wilson, JA, Gustafson, KR and Craik, DJ (2008). Cyclotides as natural anti-HIV agents. Biopolymers 90: 5160.CrossRefGoogle ScholarPubMed
Jang, H, Ma, B, Woolf, TB and Nussinov, R (2006). Interaction of protegrin-1 with lipid bilayers: membrane thinning effect. Biophysical Journal 91: 28482859.CrossRefGoogle ScholarPubMed
Jenssen, H, Fjell, CD, Cherkasov, A and Hancock, RE (2008). QSAR modeling and computer-aided design of antimicrobial peptides. Journal of Peptide Science 14: 110114.CrossRefGoogle ScholarPubMed
Kang, JH and Lee, MS (2005). Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. Journal of Applied Microbiology 98: 11691176.CrossRefGoogle ScholarPubMed
Kraus, D and Peschel, A (2008). Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiology 3: 437451.CrossRefGoogle ScholarPubMed
Kruszewska, D, Sahl, HG, Bierbaum, G, Pag, U, Hynes, SO and Ljungh, A (2004). Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. Journal of Antimicrobial Chemotherapy 54: 648653.CrossRefGoogle Scholar
Lee, PH, Ohtake, T, Zaiou, M, Murakami, M, Rudisill, JA, Lin, KH and Gallo, RL (2005). Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proceedings of the National Academy of Sciences, USA 102: 37503755.CrossRefGoogle ScholarPubMed
Lehrer, RI (2007). Multispecific myeloid defensins. Current Opinion in Hematology 14: 1621.CrossRefGoogle ScholarPubMed
Leitgeb, B, Szekeres, A, Manczinger, L, Vágvölgyi, C and Kredics, L (2007). The history of alamethicin: a review of the most extensively studied peptaibol. Chemistry and Biodiversity 4: 10271051.CrossRefGoogle ScholarPubMed
Linde, A, Ross, CR, Davis, EG, Dib, L, Blecha, F and Melgarejo, T (2008). Innate immunity and host defense peptides in veterinary medicine. Journal of Veterinary Internal Medicine 22: 247265.CrossRefGoogle ScholarPubMed
Lynn, DJ and Bradley, DG (2007). Discovery of alpha-defensins in basal mammals. Developmental and Comparative Immunology 31: 963967.CrossRefGoogle ScholarPubMed
Mani, R, Cady, SD, Tang, M, Waring, AJ, Lehrer, RI and Hong, M (2006). Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proceedings of the National Academy of Sciences, USA 103: 1624216247.CrossRefGoogle ScholarPubMed
Marcos, JF, Muñoz, A, Pérez-Payá, E, Misra, S and López-García, B (2008). Identification and rational design of novel antimicrobial peptides for plant protection. Annual Review of Phytopathology 46: 273301.CrossRefGoogle ScholarPubMed
McPhee, JB and Hancock, RE (2005). Function and therapeutic potential of host defence peptides. Journal of Peptide Science 11: 677687.CrossRefGoogle ScholarPubMed
Murakami, M, Lopez-Garcia, B, Braff, M, Dorschner, RA and Gallo, RL (2004). Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. Journal of Immunology 172: 30703077.CrossRefGoogle ScholarPubMed
Mygind, PH, Fischer, RL, Schnorr, KM, Hansen, MT, Sönksen, CP, Ludvigsen, S, Raventós, D, Buskov, S, Christensen, B, De Maria, L, Taboureau, O, Yaver, D, Elvig-Jørgensen, SG, Sørensen, MV, Christensen, BE, Kjaerulff, S, Frimodt-Moller, N, Lehrer, RI, Zasloff, M and Kristensen, HH (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437: 975980.CrossRefGoogle ScholarPubMed
Nes, IF, Diep, DB and Holo, H (2007). Bacteriocin diversity in Streptococcus and Enterococcus. Journal of Bacteriology 189: 11891198.CrossRefGoogle ScholarPubMed
Rossi, LM, Rangasamy, P, Zhang, J, Qiu, XQ and Wu, GY (2008). Research advances in the development of peptide antibiotics. Journal of Pharmaceutical Sciences 97: 10601070.CrossRefGoogle ScholarPubMed
Salzman, NH, Ghosh, D, Huttner, KM, Paterson, Y and Bevins, CL (2003). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522526.CrossRefGoogle ScholarPubMed
Sang, Y and Blecha, F (2008). Porcine host defense peptides: expanding repertoire and functions. Developmental and Comparative Immunology, 2008 June 9 [Epub ahead of print] doi:10.1016/j.dci.2008.05.006.CrossRefGoogle Scholar
Sang, Y, Ortega, MT, Blecha, F, Prakash, O and Melgarejo, T (2005). Molecular cloning and characterization of three β-defensins from canine testis. Infection and Immunity 73: 26112620.CrossRefGoogle Scholar
Sang, Y, Ortega, MT, Rune, K, Xiau, W, Zhang, G, Soulages, JL, Lushington, GH, Fang, K, Williams, TD, Blecha, F and Melgarejo, T (2007). Canine cathelicidin (K9CATH): gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide. Developmental and Comparative Immunology 31: 12781296.CrossRefGoogle ScholarPubMed
Scott, MG, Dullaghan, E, Mookherjee, N, Glavas, N, Waldbrook, M, Thompson, A, Wang, A, Lee, K, Doria, S, Hamill, P, Yu, JJ, Li, Y, Donini, O, Guarna, MM, Finlay, BB, North, JR and Hancock, RE (2007). An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnology 25: 465472.CrossRefGoogle ScholarPubMed
Selsted, ME and Ouellette, AJ (2005). Mammalian defensins in the antimicrobial immune response. Nature Immunology 6: 551557.CrossRefGoogle ScholarPubMed
Sit, CS and Vederas, JC (2008). Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochemistry and Cell Biology 86: 116123.CrossRefGoogle Scholar
Silverstein, KA, Graham, MA, Paape, TD and VandenBosch, KA (2005). Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiology 138: 600610.CrossRefGoogle ScholarPubMed
Steinstraesser, L, Koehler, T, Jacobsen, F, Daigeler, A, Goertz, O, Langer, S, Kesting, M, Steinau, H, Eriksson, E and Hirsch, T (2008). Host defense peptides in wound healing. Molecular Medicine 14: 528537.CrossRefGoogle ScholarPubMed
Svetoch, EA, Eruslanov, BV, Perelygin, VV, Mitsevich, EV, Mitsevich, IP, Borzenkov, VN, Levchuk, VP, Svetoch, OE, Kovalev, YN, Stepanshin, YG, Siragusa, GR, Seal, BS and Stern, NJ (2008). Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. Journal of Agricultural and Food Chemistry 56: 19421948.CrossRefGoogle ScholarPubMed
Thevissen, K, Kristensen, HH, Thomma, BP, Cammue, BP and François, IE (2007). Therapeutic potential of antifungal plant and insect defensins. Drug Discovery Today 12: 966971.CrossRefGoogle ScholarPubMed
Warren, WC, Hillier, LW, Marshall Graves, JA, Birney, E, Ponting, CP, Grützner, F, Belov, K, Miller, W, Clarke, L, Chinwalla, AT, Yang, S-P, Heger, A, Locke, DP, Miethke, P, Waters, PD, Veyrunes, F, Fulton, L, Fulton, B, Graves, T, Wallis, J, Puente, X, Lopez-Otin, C, Ordonez, GR, Eichler, EE, Cheng, LIN, Cheng, ZE, Deakin, JE, Alsop, A, Thompson, K, Kirby, P, Papenfuss, AT, Wakefield, MJ, Olender, T, Lancet, D, Huttley, GA, Smit Arian, FA, Pask, A, Temple-Smith, P, Batzer, MA, Walker, JA, Konkel, MK, Harris, RS, Whittington, CM, Wong, ESW, Gemmell, NJ, Buschiazzo, E, Vargas Jentzsch, IM, Merkel, A, Schmitz, J, Zemann, A, Churakov, G, Kriess, JO, Brosius, J, Murchison, EP, Sachidanandam, SC, Hannon, GJ, Tsend-Ayush, E, Mcmillan, D and Attenborough, R (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: 175183.Google ScholarPubMed
Whittington, CM, Papenfuss, AT, Bansal, P, Torres, AM, Wong, ES, Deakin, JE, Graves, T, Alsop, A, Schatzkamer, K, Kremitzki, C, Ponting, CP, Temple-Smith, P, Warren, WC, Kuchel, PW and Belov, K (2008). Defensins and the convergent evolution of platypus and reptile venom genes. Genome Research 18: 986994.CrossRefGoogle ScholarPubMed
Willey, JM and van der Donk, WA (2007). Lantibiotics: peptides of diverse structure and function. Annual Review of Microbiology 61: 477501.CrossRefGoogle ScholarPubMed
Wu, SC, Chen, HL, Yen, CC, Kuo, MF, Yang, TS, Wang, SR, Weng, CN, Chen, CM and Cheng, WT (2007). Recombinant porcine lactoferrin expressed in the milk of transgenic mice enhances offspring growth performance. Journal of Agricultural and Food Chemistry 55: 46704677.CrossRefGoogle ScholarPubMed
Yamaguchi, Y, Nagase, T, Tomita, T, Nakamura, K, Fukuhara, S, Amano, T, Yamamoto, H, Ide, Y, Suzuki, M, Teramoto, S, Asano, T, Kangawa, K, Nakagata, N, Ouchi, Y and Kurihara, H (2007). Beta-defensin overexpression induces progressive muscle degeneration in mice. American Journal of Physiology – Cell Physiology 292: C2141C2149.CrossRefGoogle ScholarPubMed
Yeaman, MR and Yount, NY (2007). Unifying themes in host defence effector polypeptides. Nature Reviews Microbiology 5: 727740.CrossRefGoogle ScholarPubMed
Zaiou, M (2007). Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. Journal of Molecular Medicine 85: 317329.CrossRefGoogle ScholarPubMed
Zanetti, M (2005). The role of cathelicidins in the innate host defenses of mammals. Current Issues in Molecular Biology 7: 179196.Google ScholarPubMed
Zhang, J, Li, L, Cai, Y, Xu, X, Chen, J, Wu, Y, Yu, H, Yu, G, Liu, S, Zhang, A, Chen, J and Cheng, G (2008). Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expression and Purification 57: 127135.CrossRefGoogle ScholarPubMed
Zhu, S (2008). Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Molecular Immunology 45: 828838.CrossRefGoogle ScholarPubMed