Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T05:30:59.211Z Has data issue: false hasContentIssue false

Suitability of traditional and conventional pig breeds in organic and low-input production systems in Europe: Survey results and a review of literature

Published online by Cambridge University Press:  04 April 2013

J.I. Leenhouwers*
Affiliation:
TOPIGS Research Center IPG, Beuningen, The Netherlands
J.W.M. Merks
Affiliation:
Genetics' Added Value B.V., Eindhoven, The Netherlands
*
Correspondence to: J.I. Leenhouwers, TOPIGS Research Center IPG, Beuningen, The Netherlands. email: jascha.leenhouwers@ipg.nl
Get access

Summary

For many years, there has been debate about the suitability of traditional and conventional pig breeds in low-input and organic production systems. This review compiles reproductive and finishing performance of traditional and conventional breeds in low-input and organic production systems in Europe, based on literature studies and farm surveys until 2010. In comparison with traditional breeds, conventional breeds wean many piglets, have efficient and fast growth and lean carcasses. They thrive well in North West European climatic conditions with temperate summers and mild winters. Optimal housing may be indoors with outdoor runs, because this provides a controlled environment in which large litters are more easily managed. The lean meat of conventional breeds is suitable for the commodity organic pork market. Traditional breeds comprise a group of prolific breeds with good finishing performance (e.g. Saddlebacks, Pulawska) and breeds kept for special meat production (e.g. Ibérico, Cinta Senese). The prolific and leaner traditional breeds are suitable for commodity organic pork production, especially when crossed with conventional white boar breeds to give some extra leanness to the carcass. Special meat breeds are unsuitable for commodity organic pork production owing to their low fertility and high carcass fatness, but extra added value is obtained by their specific meat and fat quality.

Résumé

Pendant longtemps, il a été débattu de la pertinence des races porcines traditionnelles et conventionnelles dans les systèmes de production biologique et dans ceux à faible apport d'intrants. Cette synthèse compile des données de performances reproductives et en finition de races traditionnelles et conventionnelles dans des systèmes de production biologique et à faible apport d'intrants en Europe, sur la base d'études bibliographiques et d'enquêtes d'exploitation réalisées jusqu'à 2010. Par rapport aux races traditionnelles, les races conventionnelles sèvrent un grand nombre de porcelets, ont une croissance efficiente et rapide et des carcasses maigres. Ces races prospèrent bien dans les conditions climatiques du nord-ouest de l'Europe avec des étés tempérés et des hivers doux. Le logement dans des bâtiments avec parcours en plein air peut être le logement optimal puisque celui-ci offre un environnement contrôlé qui rend plus facile la conduite des grandes portées. La viande maigre des races conventionnelles convient au marché de la viande de porc biologique. Les races traditionnelles comprennent un groupe de races prolifiques avec de bonnes performances en finition (par exemple, Saddleback, Pulawska) et des races élevées pour la production de viande spéciale (par exemple, Ibérico, Cinta Senese). Les races traditionnelles prolifiques plus maigres sont appropriées pour la production de viande de porc biologique, notamment lorsqu'elles sont croisées avec des verrats de races conventionnelles blanches dans le but d'avoir des carcasses encore plus maigres. Les races à viande spéciale ne conviennent pas à la production de viande de porc biologique à cause de leur faible fertilité et du fait d'avoir des carcasses très grasses. La spécificité de leur viande et la qualité de leur gras apportent cependant de la valeur ajoutée supplémentaire.

Resumen

Durante muchos años se ha debatido sobre la idoneidad de las razas porcinas tradicionales y convencionales en los sistemas de producción ecológica y en aquéllos con bajo nivel de insumos. Esta revisión recopila datos de rendimientos reproductivos y de acabado de razas tradicionales y convencionales en sistemas de producción ecológica y con bajo nivel de insumos en Europa, en base a estudios bibliográficos y encuestas ganaderas realizados hasta 2010. En comparación con las razas tradicionales, las razas convencionales destetan muchos lechones, crecen de forma rápida y eficiente y tienen unas canales magras. Estas razas prosperan bien en las condiciones climáticas del noroeste europeo con veranos templados e inviernos suaves. El alojamiento en naves con parques exteriores puede ser el alojamiento óptimo puesto que proporciona un ambiente controlado en el que el manejo de grandes camadas resulta más fácil. La carne magra de las razas convencionales es apropiada para el mercado de carne de cerdo ecológica. Las razas tradicionales comprenden un grupo de razas prolíficas con buenos rendimientos en el acabado (por ejemplo, Saddleback, Pulawska) y razas criadas para la producción de carne especial (por ejemplo, Ibérico, Cinta Senese). Las razas tradicionales prolíficas más magras son adecuadas para la producción de carne de cerdo ecológica, sobre todo cuando son cruzadas con verracos de razas convencionales blancas con el fin de obtener canales aún más magras. Las razas de carne especial no son apropiadas para la producción de carne de cerdo ecológica debido a su baja fertilidad y al elevado contenido en grasa de sus canales. No obstante, el carácter específico de su carne y la calidad de su grasa aportan un valor añadido extra.

Type
Special Issue: Adding value
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarhus University Survey. 2008. Survey data Denmark 2008. Tjele, Denmark, DJF, Faculty of Agricultural Sciences.Google Scholar
Alderson, L. 2007. The Saddleback family of pig breeds. The Ark (available at http://www.rbst.org.uk/files). Accessed: 20 July 2010.Google Scholar
ANAS survey. 2010. Survey data Italy 2006–2009. Rome, Italy, Associazione Nazionale Allevatori Suini.Google Scholar
Bille, N., Nielsen, N.C., Larsen, J.L. & Svendsen, J. 1974. Preweaning mortality in pigs. 2. The perinatal period. Nordisk Vet. Med., 26: 294313.Google Scholar
Blair, R. 2007. Choosing the right breed and strain of pig. In Blair, R., ed. Nutrition and feeding of organic pigs. pp. 258275. Cambridge, USA, CABI.CrossRefGoogle Scholar
BPEX. 2009. Pig yearbook 2009. Milton Keynes, England, British Pig Executive.Google Scholar
Brandt, H., Werner, D.N., Baulain, U., Brade, W. & Weissmann, F. 2010. Genotype-environment interactions for growth and carcass traits in different pig breeds kept under conventional and organic production systems. Animal 4: 535544.Google Scholar
Canario, L., Lundgren, H., Haandlykken, M. & Rydhmer, L. (2010). Genetics of growth in piglets and the association with homogeneity of body weight within litters. J. Anim. Sci. 88: 12401247.Google Scholar
Chambers, F. 2005. Using rare breeds in organic farming systems (2) (available at http://www.landbrugsinfo.dk/Oekologi/Filer/Chambers_F.pdf). Accessed: 23 June 2010.Google Scholar
CIWF. 2005. Appendix – Pig Production Case Studies. 2005. Free-range organic breeding system, Eastbrook organic farm, Wiltshire. Breeding system with sows kept free-range and with late weaning of piglets (pigs finished at Courtyard Farm, Norfolk, United Kingdom). Compassion in World Farming (available at http://www.ciwf.org.uk/resources/education/good_agricultural_practice/book/default.aspx). Accessed: 2 July 2011.Google Scholar
Compendium of Animal Health & Welfare in Organic Farming. 2000. Breeding. Pig breeds and breeding (available at http://www.organicvet.co.uk/Pigweb/health/breed.htm). Accessed: 6 August 2010.Google Scholar
Daza, A., Olivares, A., Rey, A.I., Ruiz, J. & López-Bote, C.J. 2008. Iberian pig production: the problems of success. Options Méditerranéennes, Ser. A, 78: 163171.Google Scholar
DEFRA. 2002. Optimising production systems for organic pig production. CSG 15, final project report (available at http://orgprints.org/8122). Accessed: 6 August 2010.Google Scholar
Dikić, M., Jurić, I., Mužic, S. & Janječić, Z. 2003. Carcass composition of Turopolje pig, the autochthonous Croatian breed. Agric. Conspectus Sci. 68: 249254.Google Scholar
Edwards, S. (ed.) 2011. Knowledge synthesis: animal health and welfare in organic pig production (available at http://www.icrofs.org/coreorganic/corepig.html). Accessed: 4 July 2011.Google Scholar
Egerszegi, I., Rátky, J., Solti, L. & Brüssow, K-P. 2003. Mangalica – an indigenous swine breed from Hungary (Review). Archiv. Tierzucht., Dummerstorf 46: 245256.Google Scholar
Ehlich, M. 2007. Das Deutsche Sattelschwein (available at http://www.g-e-h.de/geh-schweine/14-sattel.htm). Accessed: 24 June 2010.Google Scholar
Elbarn. 2010. Breeds (available at http://www.elbarn.net/elbarn/Breeds/tabid/123/Default.aspx) European Livestock Breeds Ark and Rescue Net. Accessed: 4 July 2011.Google Scholar
English, P.R. & Smith, W.J. 1975. Some causes of death in neonatal piglets. Vet. Annu. 15: 95104.Google Scholar
EU. 2010. An analysis of the EU organic sector. European Commission Directorate-General for Agriculture and Rural Development (available at http://ec.europa.eu/agriculture/analysis/markets/organic_2010_en.pdf). Accessed: 24 June 2011.Google Scholar
Farke, A. & Sundrum, A. 2005. Fattening pigs in an outdoor system as a part of the crop rotation within organic farming: growth performance and carcass yield. Organic pig production in free range systems. Landbauforschung Völkenrode-FAL Agric. Res., Sonderheft 281(Special Issue): 2530.Google Scholar
Franci, O., Campodoni, G., Bozzi, R., Pugliese, C., Acciaioli, A. & Gandini, G. 2003. Productivity of Cinta Senese and Large White × Cinta Senese pigs reared outdoors in woodlands and indoors. 2. Slaughter and carcass traits. Ital. J. Anim. Sci. 2: 5965.Google Scholar
Frick, B. & Dening, B. 2008. Organic pig production (available at http://www.organicagcentre.ca/NewspaperArticles/na_organic_pig.asp) Organic Agriculture Centre of Canada, Nova Scotia Agricultural College, Truro, Canada. Accessed: 6 August 2010.Google Scholar
Früh, B. 2011. Organic pig production in Europe. Health management in common organic pig farming. Forster, J. & Weidmann, G. (eds.) (available at http://www.corepig.coreportal.org). Accessed: 4 July 2011.Google Scholar
GEH. 2010. Wollschwein/Mangalitza (available at http://www.g-e-h.de/geh-raku/schweine/schwwoll.htm). Gesellschaft zur Erhaltung alter und gefährdeter Haustierrassen e.V., Witzenhausen, Germany. Accessed: 24 June 2010.Google Scholar
Gonzalez, J., Gispert, M., Rodríguez, P., Gil, M., Jaume, J., Tibau, J. & Oliver, M.A. 2007. Carcass and meat quality of Porc Negre Mallorquí (Majorcan Black Pig). Proceedings of 6th International Symposium on the Mediterranean Pig, 11–13 October 2007. pp. 258–262. tMessina - Capo d'Orlando, Italy.Google Scholar
Haus Düsse. 2000. Referat IV: Schweinehaltung – Berichte und Versuchsergebnisse 2000 (available at http://www.duesse.de/wir/jahresbericht/2000/04-schweinehaltung.pdf). Accessed: 24 June 2010.Google Scholar
Haus Düsse. 2006. Landwirtschaftszentrum Haus Düsse, Referat Schweinehaltung. Versuchsberichte 2006 (available at http://duesse.de/tierhaltung/schweine/oeko_schwein/index.htm). Accessed: 24 June 2010.Google Scholar
Heyer, A., Andersson, K., Lundström, K. 2006. Performance, carcass and technological meat quality of pigs in indoor and outdoor production systems. Acta Agric. Scand. Sect. A 56: 5564.Google Scholar
Honeyman, M.S. & Roush, W.B. 2002. The effects of outdoor farrowing hut type on prewean piglet mortality in Iowa. Am. J. Alternative Agric. 17: 9295.Google Scholar
IFIP. 2008. Bilan des effectifs, des performances de reproduction et de variabilité génétique des 6 races locales. TechniPorc, Vol. 31, No. 3 (available at www.itp.asso.fr). Accessed: 6 August 2010.Google Scholar
Ivanova-Peneva, S.G. & Stoykov, A. 2005. East Balkan swine in Bulgaria – an option for organic production. Proceedings of the 4th SAFO Workshop. pp. 97–100. Frick, Switzerland.Google Scholar
Karolyi, D., Luković, Z. & Salajpal, K. 2007. Production traits of Black Slavonian pigs. Proceedings of 6th International Symposium on the Mediterranean Pig, 11–13 October 2007. pp. 207–213. Messina - Capo d'Orlando, Italy.Google Scholar
Kelly, H.R.C., Browning, H.M., Day, J.E.L., Martins, A., Pearce, G.P., Stopes, C. & Edwards, S.A. 2007. Effect of breed type, housing and feeding system on performance of growing pigs managed under organic conditions. J. Sci. Food Agric. 87: 27942800.Google Scholar
Kongsted, A.G., Claudi-Magnussen, C., Hermansen, J.E. & Andersen, B.H. 2008. Strategies for a diversified organic pork production. Proceedings 16th IFOAM Organic World Congress, Modena, Italy, 16–20 June 2008 (available at http://orgprints.org/14772). Accessed: 11 September 2010.Google Scholar
Kralik, G. & Petričević, A. 2001. Production traits of black Slavonian pig. Proceedings: Biological Diversity in Animal Production of Republic of Croatia. pp. 115–122. Zagreb, Hrvatska.Google Scholar
Kralik, G., Petričević, A. & Levaković, F. 1988. Slaughter value of pigs of different production types. In Chandler, C.S. & Thornton, R.F. eds. Proceedings 34th International Congress of Meat Science and Technology. pp. 88–90. Brisbane, Australia.Google Scholar
Laister, S. & Konrad, S. 2005. Behaviour, performance and carcass quality of three genotypes of growing-finishing pigs in outdoor pig production in Austria: A pilot study. Organic pig production in free range systems. Landbauforschung Völkenrode-FAL Agric. Res., Sonderheft 281(Special Issue): 1318.Google Scholar
Lapp, J., Baulain, U., Brade, W., Brandt, H., Fischer, K. & Weißmann, F. 2009. Auswirkungen unterschiedlicher Duroc-Genanteile auf das ökologisch erzeugte Mastschwein. In Mayer, J. et al. Beiträge zur 10. Wissenschaftstagung ökologischer Landbau. Zürich, 11–13 February 2009. pp. 101–104. Berlin, Germany.Google Scholar
Larsen, V.Aa. & Jørgensen, E. 2002. Reproductive performance of outdoor sow herds. Livestock Product. Sci. 78: 233243.CrossRefGoogle Scholar
Latorre, M.A., Iguácel, F., Sanjoaquín, L. & Revilla, R. 2009. Effect of sire breed on carcass characteristics and meat and fat quality of heavy pigs reared outdoor and intended for dry-cured meat production. Animal 3: 461467.Google Scholar
Laverstoke farm. 2009. Laverstoke Park Education Centre. Laverstoke Farm technical results, (available at http://lpec.virtualschools.net/folders/learning_zone/ks3_and_ks4/organic_pigs.cfm). Accessed: 2 October 2010.Google Scholar
Leeb, C., Bernard, F. & Winckler, C. 2010. Selected productivity data from BEP Bioschwein. Project no. 100188 BMLFUW *LE.1.3.2/0134-II/1/2006; personal communication.Google Scholar
Leenhouwers, J.I., Ten Napel, J., Hanenberg, E.H.A.T., & Merks, J.W.M. 2011. Breeding replacement gilts for organic pig herds. Animal 5: 615621.Google Scholar
Liotta, L., Chiofalo, B., Zumbo, A. & Chiofalo, V. 2005. Effects of different nutritional levels on Nero Siciliano pig performance. Ital. J. Anim. Sci. 4(Suppl. 2): 470472.CrossRefGoogle Scholar
Lo Fiego, D.P., Lelo, M.C., Comellini, M. & Volpelli, L.A. 2007. Carcass and meat quality traits of pigs with different blood fractions of “Mora Romagnola” breed, reared outdoors. Proceedings of 6th International Symposium on the Mediterranean Pig, 11–13 October 2007. pp. 302–307. Messina - Capo d'Orlando, Italy.Google Scholar
Martins, A., Kelly, H., Day, J., Stopes, C., Browning, H. & Edwards, S. 2002. Optimising organic pig production. A guide to good practice. In Day, J. ed. Breeds and replacement system, ADAS Consulting Ltd, Terrington, UK, pp. 18–20.Google Scholar
MOE. 2003. Mangalitza herd book. Debrecen, Hungary, National Association of Mangalica Breeders.Google Scholar
Oksbjerg, N., Strudsholm, K., Lindahl, G. & Hermansen, J.E. 2005. Meat quality of fully or partly outdoor reared pigs in organic production. Acta Agric. Scand. Sect. A 55: 106112.Google Scholar
Petričević, A., Kralik, G. & Petrović, D. 1988. Participation and quality of some tissue in pig carcasses of different production. In Chandler, C.S. & Thornton, R.F. eds. Proceedings 34th International Congress of Meat Science and Technology. pp. 68–70. Brisbane, Australia.Google Scholar
Pietrolà, E., Pilla, F., Maiorano, G. & Matassino, D. 2006. Morphological traits, reproductive and productive peformances of Casertana pigs reared outdoors. Ital. J. Anim. Sci. 5: 139146.Google Scholar
POLSUS survey. 2009. Survey data Poland 2004–2009. Warsaw, Poland, Polski Związek Hodowców i Producentów Trzody Chlewnej.Google Scholar
Prevost, B. 2010. Genetische Diversität der Österreichischen Mangalitza und Turopolje Schweine Populationen. Vienna, Austria, University of Natural Resources and Life Sciences.Google Scholar
Pugliese, C., Madonia, G., Chiofalo, V., Margiotta, S., Acciaioli, A. & Gandini, G. 2003. Comparison of the performances of Nero Siciliano pigs reared indoors and outdoors. 1. Growth and carcass composition. Meat Sci. 65: 825831.Google Scholar
Quality Genetics survey. 2009. Survey data Sweden 2009. Hörby, Sweden, Quality Genetics Sweden HB.Google Scholar
Rossi, A., Ferrari, P., Bossio, M.B., Monaco, F. & Fusaro, A. 2007. Growth performance and meat quality of outdoor reared Calabrese pigs. Proceedings of 6th International Symposium on the Mediterranean Pig, 11–13 October 2007. pp. 214–223. Messina - Capo d'Orlando, Italy.Google Scholar
Sabbioni, A., Beretti, V., Zanon, A., Superchi, P., Manini, R. & Cervi, C. 2007. Reproductive parameters of “Nero di Parma” sows reared outdoor and indoor. Ital. J. Anim. Sci. 6(Suppl. 1): 712.Google Scholar
Senčić, D., Bukvić, Z., Antunović, Z. & Šperanda, M. 2005. Slaughter quality of Black Slavonian pig-endangered breed and its cross-breeds with Swedish landrace while keeping them outdoor. Poljoprivreda 11: 4348.Google Scholar
Soil Association. 2011. Soil Association organic standards. Farming and growing. Revision 16.4 (available at http://www.soilassociation.org/whatwedo/organicstandards.aspx). Accessed: 6 July 2011.Google Scholar
Strudsholm, K. & Hermansen, J.E. 2005. Performance and carcass quality of fully or partly outdoor reared pigs in organic production. Livestock Product. Sci. 96: 261268.Google Scholar
Sundrum, A. 2007. Survey data Germany. Faculty of Organic Agricultural Sciences of the University of Kassel Department of Animal Nutrition and Animal Health.Google Scholar
Sustainable table. 2011. The issues. Heritage and heirloom foods, (available at http://www.sustainabletable.org/issues/heritage/index_pf.html, Sustainable table, New York, USA. Accessed: 9 November 2011.Google Scholar
Szulc, K., Buczyński, J.T., Skrzypczak, E. & Panek, A. 2006. Live testing results of Zlotnicka Spotted (ZS), ZS × Polish Large White, and ZS ×Hampshire fatteners. Anim. Sci. Papers Rep. 24(Suppl. 1): 6569.Google Scholar
TOPIGS Ibérica survey. 2010. Survey data Spain 2009–2010. S.L., Madrid, Spain, TOPIGS Ibérica.Google Scholar
TOPIGS survey. 2008. Survey results the Netherlands 2008. Vught, The Netherlands, TOPIGS breeding Company.Google Scholar
TOPIGS survey. 2010. Survey data the Netherlands 2010. Vught, The Netherlands, TOPIGS breeding Company.Google Scholar
Uremović, M., Uremović, Z. & Luković, Z. 2000. Production properties of the Black Slavonian pig breed. Preliminary report. Zb Biotehniške fak. Univ. v Ljubljani. Kmetijstvo. Zootehnika, 76(2): 131–134 (available at http://www.bfro.uni-lj.si/zoo/publikacije/zbornik). Accessed: 6 August 2010.Google Scholar
Uremović, M., Uremović, Z., Luković, Z. & Konjačić, M. 2003. The influence of genotype and production conditions on the fertility of sows in outdoor system. Agric. Conspectus Sci. 68: 245248.Google Scholar
Wallenbeck, A., Rydhmer, L. & Thodberg, K. 2008. Maternal behaviour and performance in first-parity outdoor sows. Livestock Sci. 116: 216222.Google Scholar
Wallenbeck, A., Gustafson, G. & Rydhmer, L. 2009. Sow performance and maternal behaviour in organic and conventional herds. Acta Agric. Scand., Sect. A – Anim. Sci. 59: 181191.Google Scholar
Weissmann, F., Biedermann, G. & Klitzing, A. 2005. Performance, carcass and meat quality of different pig genotypes in an extensive outdoor fattening system on grass clover in organic farming. In Sundrum, A. & Weissmann, F. eds. Organic pig production in free range systems. Sonderheft 281. Special issue. pp. 1924. Landnauforschung Völkenrode- FAL Agricultural Research; Bundesforschungsanstalt für Landwritschaft (FAL), Braunschweig, Germany.Google Scholar
Werner, D., Brandt, H. & Quanz, G. 2007. Die Mastleistung und Schlachtkörperqualität unterschiedlicher genetischer Schweineherkünfte in konventioneller und ökologischer Haltung (available at http://orgprints.org/view/projects/wissenschaftstagung-2007.html). Accessed: 6 August 2010.Google Scholar
Zaleski, H.M. & Hacker, R.R. 1993. Variables related to the progress of parturition and probability of stillbirth in swine. Can. Vet. J. 34: 109113.Google Scholar
Zumbo, A., Di Rosa, A.R., Di Marco, V., Aronica, V., Russo, M. & Pruiti, V. 2007. In vitam and post mortem performances of “Nero Siciliano” fattening pigs fed with different diets. Proceedings of 6th International Symposium on the Mediterranean Pig, 11–13 October 2007. pp. 179–182. Messina - Capo d'Orlando, Italy.Google Scholar