Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-15T21:07:35.783Z Has data issue: false hasContentIssue false

Integrating policies for the management of animal genetic resources with demand for livestock products and environmental sustainability1

Published online by Cambridge University Press:  01 August 2011

H.D. Blackburn
Affiliation:
National Animal Germplasm Program, National Center for Genetic Resources Preservation, ARS, USDA, Fort Collins,, CO 80521 USA
Get access

Summary

Global recognition of the need to conserve animal genetic resources comes at a time when the livestock sector faces significant challenges in meeting the growing demand for livestock products and the mitigation of negative environmental impacts caused by livestock. In developing regions it would seem that portions of the growing demand for livestock products are being met by increasing animal numbers instead of achieving increases in production efficiency. Concurrently, extensive grazing and mixed crop-livestock production systems are largely responsible for significant greenhouse gas emissions and other forms of environmental degradation. Under the growing demand and environmental sustainability rubric there exists a need to garner maximum benefit from diverse animal genetic resources. These three areas; growing demand on animal products, environmental issues, and conservation of AnGR form a nexus that national policies must simultaneously consider. To advance this integration, a policy framework is proposed that consists of incentives to produce, a secure resource base (e.g., genetic resources, land tenure) and access to markets for outputs and inputs including technology. Within this framework a set of potential policies are suggested that promote conservation, livestock sector growth and environmental sustainability.

Résumé

La reconnaissance au niveau mondial du besoin de conserver les ressources génétiques animales arrive à un moment où le secteur de l'élevage se trouve à faire face à des défis importants tels que l'augmentation de la demande de produits et comment atténuer l'impact négatif sur le milieu du à l'élevage. Dans les régions développées il semblerait qu'une partie de l'augmentation de la demande de produits puisse être obtenue avec l'augmentation du nombre d'animaux au lieu d'essayer d'augmenter l'efficacité de la production. Au contraire, le pâturage extensif et les systèmes mixtes de production agriculture-élevage sont en grande partie responsables des émission de gaz de serre et d'autres formes de dégradation du milieu. Si nous considérons les normes au sujet de l'augmentation de la demande et la durabilité de l'environnement il faudra obtenir un bénéfice maximum des différentes ressources génétiques animales. Les trois domaines sont:

1. L'augmentation de la demande de produits d'origine animale.

2. Les problèmes de l'environnement.

3. La conservation des formes de AnGR comme point d'union pour les politiques nationales. Pour atteindre cette intégration il est nécessaire de créer un cadre politique qui prévoit des primes à la production, une ressources de base fiable (p.e. ressources génétique, propriété de la terre) et un accès aux marchés pour les produits et la technologie. Dans ce cadre on suggère d'inclure un ensemble de normes potentielles pour promouvoir la conservation, la croissance du secteur élevage et la durabilité du milieu.

Resumen

El reconocimiento mundial sobre la necesidad de conservar los recursos zoogenéticos llega en un momento en que el sector ganadero se enfrenta a desafíos importantes como el incremento de la demanda de productos ganaderos y cómo atenuar los impactos negativos sobre el ambiente debidos a la ganadería. En las regiones desarrolladas podría parecer que una parte del aumento de la demanda de productos se podría conseguir con el incremento del número de animales en vez de intentar aumentar la eficacia de producción. Al revés, el pastoreo extensivo y los sistemas mixtos de producción agricultura-ganadería son en gran parte responsables de las emisiones de gas y otras formas de degrado ambiental. Bajo las normas de incremento de la demanda y sostenibilidad ambiental existe la necesidad de conseguir un beneficio máximo de los distintos recursos zoogenéticos. Estas tres áreas son:

1. Incremento de la demanda de productos animales.

2. Problemas ambientales.

3. Conservación de formas de AnGR como nexo para las políticas nacionales.

Para alcanzar esta integración es necesario un marco político que consiste en incentivos a la producción, un recurso de base seguro (p.e. recursos genéticos, propiedad del terreno) y un acceso a los mercados para los productos y la tecnología. Dentro de este marco se sugiere incluir un conjunto de políticas potenciales que promuevan la conservación, el crecimiento del sector ganadero y la sostenibilidad ambiental.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Asner, G. P., Elmore, A., Olander, L., Martin, R. & Harris, A.. 2004. Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources. 29: 261299.Google Scholar
Blackburn, H.D. & T.C. Cartwright. 1987. Simulated genotype, environment and interaction effects on performance characters of sheep. J. Anim. Sci. 65: 399408.CrossRefGoogle Scholar
Blackburn, H.D., Zessin, K., Taylor, J.F., Cartwright, T.C. & Mwandotto, B.A.. 1990. Flock dynamics during drought and recovery years. Proc. 8th SR-CRSP Scientific Workshop. Nairobi, pp. 1528.Google Scholar
Blackburn, H.D. & Taylor, J.F.. 1990. Simulation of flock performance when different intensities of selection are practiced. 4thWCGALP. 15: 127130.Google Scholar
Blackburn, H. 1995. Comparison of performance of Boer and Spanish Goats in two U.S. locations. J. Anim. Sci. 73: 302309.CrossRefGoogle ScholarPubMed
Blackburn, H., Lebbie, S. & van der Zijpp, A. 1998. Animal genetic resources and sustainable development. 6thWCGALP. 28: 310.Google Scholar
Blackburn, H. 2006. The National Animal Germplasm Program: Challenges and opportunitie for poultry genetic resources. Poultry Sci. 85: 210215.Google Scholar
Blackburn, W.H., Knight, R. & Wood, M.. 1982. Impact of Grazing on Watersheds; A State of Knowledge. Texas Agric. Exp. Sta. MP 1496, pp. 32.Google Scholar
Cundiff, C.V. 2005. Tropically adapted breeds - Regional Project S-1013. Southern Cooperative Series Bulletin, pp. 131143.Google Scholar
de Haan, C., Steinfeld, H. & Blackburn, H.. 1997. Livestock and the Environment: Finding a Balance. WREN media, Suffolk, UK, pp. 115.Google Scholar
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C.. 1999. Food, Agriculture, ane the Environment Discussion Paper 28. Int'l. Food Policy Res. Inst., pp. 72.Google Scholar
FAO. 2000. World Watch List for Domestic Animal Diversity, 3rd. Edition, FAO, Rome, Italy.Google Scholar
FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture. FAO, Rome, Italy.Google Scholar
Gollin, D. & Evenson, R.. 2003. Valuing animal genetic resources: lessons from plant geneti resources. Ecological Economics. 45: 353364.Google Scholar
Gibson, J. & Pullin, R.. 2005. Conservation of livestock and fish genetic resources: joint report of two studies commissioned by the CGIAR Sceince Council. Science Council Secretariat. (www.sciencecouncil.cgiar.org/activities/spps/pubs/AnFiGR%20study%20report.pdf).Google Scholar
Hanson, J.D., Baker, B.B. & Bourdon, R.M.. 1993. Comparison of the effects of different climate change scenarios on rangeland livestock production. Agric. Systems, 41: 487502.CrossRefGoogle Scholar
Ismali, T. & Thai, C.D.. 1990. Report on the Small Ruminant Collaborative Research Support Project (SR-CRSP) Indonesia Workshop. US Agency for International Development, Washington, DC.Google Scholar
Kanis, E., De Greef, K., Hiemstra, A. & van Arendonk, J.. 2005. Breeding for societally important traits in pigs. J. Anim. Sci. 83: 948957.Google Scholar
Kolmodin, R., Strandberg, E., Jorjani, H. & Danell, B.. 2002. Selection in presence of genotype by environment interaction may increase environmental sensitivity. 7thWCGALP. 32: 333336.Google Scholar
Leng, R.A. 1991. Improving Ruminant Production and Reducing Methane Emissions from Ruminants by Strategic Supplimentation. U. S. Environmental Protection Agency, Washington, D.C. EPA/400/1-91/004.Google Scholar
Madalena, F., Agyemang, K., Cardellino, R. & Jain, G.. 2002. Genetic improvement in medium- to low-input systems of animal production. Experiences to date. 7thWCGALP. 33: 331340.Google Scholar
Mendelsohn, R. 2003. The challenge of conserving indigenous domesticated animals. Ecological Economics. 45: 501510.Google Scholar
Misztal, I. & Ravagnolo, O.. 2002. Studies on genetics of heat tolerante in Holsteins. 7thWCGALP. 32: 345348.Google Scholar
Norton, R. 2004. Agriculture Development Policy: Concepts and Experiences. FAO, Rome.Google Scholar
Rege, J. & Gibson, J.. 2003. Animal genetic resources and economic development: issues in relation to economic valuation. Ecological Economics. 45: 319330.Google Scholar
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & de Haan, C.. 2006. Livestock's long shadow: environmental issues and options. FAO, Rome, Italy.Google Scholar
Souza, J., Ramos, A., Silva, A., Euclides Filho, K., Alenctar, M., Wechsler, F., Gadini, C. & Van Vleck, L.. 1998. Effect of genotype x environment interaction on weaning weight of Nelore calves raised in tour different regions of Brazil. 6thWCGALP. 23: 193196.Google Scholar
Tiffen, M., Mortimore, M. & Gichuki, F.. 1994. More People, Less Erosion: Environmental Recovery in Kenya. John Wiley & Sons, Chichester, UK.Google Scholar
Wollny, C. 2003. The need to conserve farm animal genetic resources in Africa: should policy makers be concerned? Ecological Economics. 45: 341352.Google Scholar