Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-25T01:32:15.382Z Has data issue: false hasContentIssue false

Genetic diversity among four short stature cattle populations of India

Published online by Cambridge University Press:  01 August 2011

M.S. Tantia
Affiliation:
National Bureau of Animal Genetic Resources, P.O. Box 129, Karnál 132001, India
R.K. Vijh
Affiliation:
National Bureau of Animal Genetic Resources, P.O. Box 129, Karnál 132001, India
B. Mishra
Affiliation:
National Bureau of Animal Genetic Resources, P.O. Box 129, Karnál 132001, India
S.T. Bharani Kumar
Affiliation:
National Bureau of Animal Genetic Resources, P.O. Box 129, Karnál 132001, India
Get access

Summary

The genetic diversity, genetic differentiation and relationship between four short stature cattle populations of south India - Punganur, Iduki, Kasargod and Vatakara - was studied, using 24 microsatellite loci. A total of 164 alleles were observed. The mean number of alleles per locus was 6.58 with mean observed and expected heterozygosity values of 0.70 and 0.75 respectively. The relative magnitude of gene differentiation (FST) was 6% and was significant except between the Iduki and Kasargod populations. The negative FIS values obtained for the majority of loci indicated a lack of population structure in the four populations. Both phylogenetic and correspondence analysis exhibited a closeness between Iduki and Kasargod animals. The results indicated that all four populations were outbred and Kasargod and Iduki animals should be considered as one even though these are reared for different purposes.

Résumé

La diversité génétique, la différence génétique et les relations entre 4 populations bovines de petite taille du Sud des Indes, Punganur, Iduki, Kasargod et Vatakara, ont été étudiés en utilisant 24 loci microsatellites. Un total de 164 allèles ont été observés. Le nombre moyen d'allèles par locus était de 6,58 avec une valeur d'hétérozigosité moyenne observée et espérée de 0,70 et 0,75, respectivement. La grandeur relative du gène de différentiation (FST) était de 6% et était significative sauf entre la population Iduki et la Kasargod. Les valeurs négatives de FIS obtenues pour la majorité des loci indiquent un manque de structure dans les 4 populations. Les analyses de correspondances et phylogénétiques montrent un lien plus étroit entre les animaux Iduki et Kasargod. Les résultats indiquent que les 4 populations étaient hors croisement et les animaux Kasargod et Iduki devraient être considérés comme une seule population, même s'ils sont élevés pour des buts différents.

Resumen

La diversidad genética, la diferencia genética y las relaciones entre 4 poblaciones bovinas de pequeño tamaño des sur de la India, Punganur, Iduki, Kasargod y Vatakara, han sido estudiadas utilizando 24 loci de microsatélites. Un total de 164 alelos han sido observados. El número medio de alelos por locus era de 6,58 con un valor de heterocigosidad media observada y esperada de 0,70 y 0,75, respectivamente. El tamaño relativo del gen de diferenciación (FST) era de 6% y resultaba significativo salvo entre la población Iduki y Kasargod. Los valores negativos de FIS obtenidos para la mayoría de los loci indican una falta de relación estrecha entre los animales Iduki y Kasargod. Los resultados indican que las 4 poblaciones estaban fuera de cruce y que los animales Kasargod y Iduki deberían considerarse como una sola población, a pesar de ser criados con objetivos distintos.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Achmann, I., Curik, I., Dovc, P., Tavar, T., Bodo, I., Habe, F., Marti, E., Solkner, J. & Brem, G.. 2004. Microsatellite diversity, population subdivision and geneflow in the Lipizzan horse. Anim. Genet. 35: 285292.CrossRefGoogle Scholar
AnilKumar, K. & Raghunandanan, K.V.. 2003. The dwarf cattle and buffalo of kerala. Kerala Agricultural University, Thrissur, India.Google Scholar
Bassam, B.J., Coetano-Anolles, G. & Gresshoff, P.M.. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels, Ann. Biochem. 196: 8083CrossRefGoogle ScholarPubMed
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F.. 2004. GENETIX 4.05. <www.univ-montp2.fr/~genetix/genetix/genetix.htm>..>Google Scholar
Bjørnstad, G. & Røed, K.H.. 2001. Breed demarcation and potential for breed allocation of horses assessed by microsatellite markers. Anim. Genet. 32: 5965.CrossRefGoogle ScholarPubMed
Botstein, D., White, R.L., Skolnick, M. & Davis, R.W.. 1980. Construction of genetic linkage maps in man using restriction fragment length polymorphism. Am. J. Human Genet. 32: 314331.Google Scholar
Country Report. 2004. Draft country report on Animal Genetic Resources of India. NBAGR, Karnal, India.Google Scholar
Cornuet, J.M., Piry, S., Luikart, G., Estoup, A., & Solinac, M.. 1999. New methods employing multilocus genotype to select or exclude populations as origin of individuals. Genetics 153: 19892000.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. & Schneider, S.. 2005. An integrated software for population genetic data analysis. ARLEQUIN ver. 3.00 <http://lgb.unige.ch/arlequin/software>.CrossRef.>Google Scholar
Goudet, J. 1995. FSTAT: A computer program to calculate F statistics. J. Hered. 86: 485486.CrossRefGoogle Scholar
Guo, S.W. & Thompson, E.A.. 1992. Performing the exact test of Hardy Weinberg proportions for multiple alleles. Biometrics 48: 361372.CrossRefGoogle ScholarPubMed
Hoffmann, I., Marsan, P.A., Barker, J.S.F., Cothran, E.G., Hanotte, O., Lenstra, J.A., Milan, D., Weigend, S. & Simianer, H.. 2004. New MoDAD marker sets to be used in diversity studies for the major farm animal species: recommendation of a joint ISAG/FAO working group. <http://dad.fao.org/en/refer/library/guidelin/marker.pdf>..>Google Scholar
Kantanen, J., Olsaker, I., Holm, L.E., Lian, S., Vilkki, J., Brusgaard, K., Eythorsdottir, E., Danell, B. & Adalsteinsson, S.. 2000. Genetic diversity and population structure of 20 North European cattle breeds. J. Hered. 91: 446457.CrossRefGoogle ScholarPubMed
Livestock Census. 2003. 17th Livestock Census. Department of Animal Husbandry and Dairying, Ministry of Agriculture, Government of India, New Delhi, India.Google Scholar
Mac-Hugh, D.E., Shriver, M.D., Loftus, R.T., Cunningham, P. & Bradley, D.G.. 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146: 10711086.CrossRefGoogle ScholarPubMed
Mac-Hugh, D.E., Loftus, R.T., Cunningham, P. & Bradley, D.G.. 1998. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim. Genet. 30: 173182.Google Scholar
Maudet, C., Luikart, G. & Taberlet, P.. 2002. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J. Anim. Sci. 80: 942950.CrossRefGoogle ScholarPubMed
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283291.CrossRefGoogle Scholar
Ota, T. 1983. DISPAN: Genetic distance and phylogenetic analysis. Pennsylvania State University, University Park, PA.Google Scholar
Rao, S.T.V., Suresh, J., Reddy, Y.R. & Veerabramhaiah, K.. 2000. Punganur-Worlds shortest endangered cattle breed. In: Sahai, R. and Vijh, R.K. (Eds), SI publications, Karnal, India, pp. 263266.Google Scholar
Raymond, M. & Rousset, F.. 1995. GENEPOP Population genetic software for exact test and ecumenicism. J. Hered. 86: 248249.CrossRefGoogle Scholar
Saitou, N. & Nei, M.. 1987. The neighbor joining method: A new method for constructing phylogenetic trees. Mol. Biol. E vol. 4: 406425.Google Scholar
Sambrook, J.E., Fritsch, F. & Maniatis, T.. 1989. Molecular cloning: A laboratory manual, Vol. 2, 2nd Edition, Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
Sodhi, M., Mukesh, M., Mishra, B.P., Mitkari, K.R., Prakash, B. & Ahlawat, S.P.S.. 2005. Evaluation of genetic differentiation in Bos indicus cattle breeds from Marathwada region of India using microsatellite polymorphism. Anim. Biotech. 16: 127137.CrossRefGoogle ScholarPubMed
Weir, B.S. & Cockerham, C.C.. 1984. Estimating F statistics for the analysis of population structure. Evolution 38: 13581370.Google ScholarPubMed
Wright, S. 1969. Evolution and genetics of populations. University of Chicago press, Chicago, IL, USA.Google Scholar
Yeh, F., Boyle, C., Rongeai, T., Ye, Z.Y. & Xian, J.M.. 1999. POPGENE: ver. 1.31. A Microsoft windows based freeware for population genetic analysis, University of Alberta, Edmonton, USA.Google Scholar