Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-03T02:34:05.208Z Has data issue: false hasContentIssue false

Caracterización genética de seis proteínas lácteas en tres razas bovinas cubanas

Published online by Cambridge University Press:  01 August 2011

O. Uffo
Affiliation:
Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, apartado 10, CP 32 700, La Habana, Cuba
I. Martín-Burriel
Affiliation:
Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
S. Martínez
Affiliation:
Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, apartado 10, CP 32 700, La Habana, Cuba
R. Ronda
Affiliation:
Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
R. Osta
Affiliation:
Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
C. Rodellar
Affiliation:
Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
P. Zaragoza
Affiliation:
Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
Get access

Resumen

En el presente estudio se presentan los primeros resultados de la determinación de la estructura genética de tres poblaciones de ganado bovino autóctono cubano: Criollo de Cuba, Cebú Cubano y Siboney de Cuba, para los loci de seis proteínas lácteas (CASA1, CASAB, CASA2, CASK, LAA y LGB). Se analizaron un total de 150 individuos (50 por cada raza), mediante análisis de ADN por PCR-RFLP.Se calcularon las frecuencias alélicas para cada locus así como condiciones de equilibrio de Hardy-Weinberg. Fueron identificados los alelos CASA1C y LAAA como evidencia de la presencia de genes de Bos indicus en las tres poblaciones cubanas. Se comprobó la existencia de elevada variabilidad en cada población lo que constituye un elemento importante para trazar estrategias de mejoramiento y/o conservación genética.

Summary

The present study shows the first results of the genetic structure determination of three populations of Cuban autochthonous bovine livestock: Criollo de Cuba, Cebú Cubano and Siboney de Cuba, for the six major milk proteins loci (CASA1, CASAB, CASA2, CASK, LAA and LGB). A total of 150 individuals (50 for each population) were analysed, by means of DNA analysis by PCR-RFLP.The allelic frequencies were calculated for each locus as well as conditions of Hardy-Weinberg equilibrium. The CASA1C and LAAA alelles were identified as evidence of the presence of Bos indicus genes in the three Cuban populations. It was proven that the existence of high variability in each population constitutes an important means to establish strategies for improvement and/or genetic conservation.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 0000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lista de Referencias

Aleandri, R, Buttazzoni, L.G.Schneider, J.C.. Carili, A. & Davoli, R.. 1990. The effects of milk protein polymorphism on milk components and cheese-producing ability. J. Dayri Sci. 73: 241255.CrossRefGoogle Scholar
Barker, A.C.M. & Manwell, C.. 1980. Chemical classification of cattle. I breed groups. Anim. Blood Groups Biochem. Genet. 11: 127150.Google Scholar
Beja-Pereira, A., Erhardt, G.. Matos, C.. Gama, L. & Ferrand, N.. 2002. Evidence of the geographical cline of casein haplotypes in Portuguese cattle breeds. Animal Genetics, 33(4): 295.CrossRefGoogle ScholarPubMed
Bonvillani, A.G., Di Renzo, M.A. & Tiranti, I.N.. 2000. Genetic polymorphism of milk protein loci in Argentinian Holstein cattle. Genet. Mol. Biol., vol. 23, no. 4, 819823. ISSN 14154757CrossRefGoogle Scholar
Bouchard, D. 1998. QTL detection with genetic markers in dairy cattle: a rewiew. Proc. 49th annual Meeting of the European Association for Animal Prduction. Warsaw. Poland.Google Scholar
Bouzat, J.L., Giovambattista, G., Golijow, C.D.Dulout, F.N. & Lojo, M.M.. 1999. Conservation genetics of native breeds: the Argentine Creole Cattle. Interciencia 23: 151157.Google Scholar
Del Lama, S.N. & Zago, M.A.. 1996. Identification of k-casein and β-lactoglobulin genotypes in Brazilian Bos indicus and Bubalus bubalis population. Braz. J. Genet 19: 7377.Google Scholar
Eigel, W.N., Butler, J.EErstrom, C.A.Farrel, H.M.Harwalker, V.R.. Jenness, R. & Whitney, R.. 1984. Nomenclature of protein of cow's milk: fifth revision. J. Dayri Sci, 67: 15991631.CrossRefGoogle Scholar
Erhardt, G. 1996. Detection of a new k-casein variant in milk of Pinzgauer cattle. Anim. Genet., 27: 105107.CrossRefGoogle ScholarPubMed
Erhardt, G. 1993. A new aS1-casein allele in bovine milk and its occurrence in different breeds. Anim. Genet. 24: 6566.CrossRefGoogle Scholar
Escoda, A.B., Alvarez, L.O. & Yerez, S.. 1981. Estudio de los polimorfismos genéticos de las proteínas de la leche producida en algunas haciendas de la zona de Carora. Rev. Facultad Agronomía (LUZ), 6(2): 714716.Google Scholar
Fernández, M.H. 1980. Asociación de los genotipos de amilasa con dos caracteres de importancia económica en vacas R1 (Holstein-Cebú-Cebú), Revta. Cub. Cienc. Veter. 155160.Google Scholar
Golijow, C.D., Giovambattista, G.Poli, M.V.R.Dulot, F.N. & Lojo, M.M.. 1999. Genetic variability and population structure in loci related to milk production traits in native Argentine Creole and Commercial Argenine Holstein cattle. Braz. J. Genet, 22: 395398.Google Scholar
Grosclaude, F., Mahé, M.F., Mercier, J.C.. Bonnemaire, J. & Teissier, J.H.. 1976. Polymorphisme des lactoprotéines de Bovinés Népalais. II. Polymorphisme des caséines “as-mineures”; le locus as2-Cn est-il lié aux loci as1-Cn, b-Cn et k-Cn? Annales de Génétique et de Sélection Animale, 8, 481491.CrossRefGoogle Scholar
Grosclaude, F. 1988. Le polymorphisme génétique des principales lactoproteines bovines. Relation avec la quantité, la composition et les aptitudes fromagères du lait. Inra Prod. Anim. 1(1): 517.CrossRefGoogle Scholar
Gutiérrez, M., Pérez-Beato, O.. Moráis, M. & Milanés, M.. 1989. Características adaptativas de vacas Criollo de Cuba. Rev. Salud Anim. 11(2): 155160.Google Scholar
Ikonén, T., Ruottinen, O.. Erhardt, G. & Ojala, M.. 1996. Allele frequencies of the major milk protein in the Finish Ayrshire and detection of a new k-casein variant. Anim. Genet., 27, 179181.CrossRefGoogle Scholar
Jacob, E. & Puhan, Z.. 1992. Technological properties of milk as influenced by genetic polymorphism of milk proteins. A review. Int. Dairy Journal. 2: 157178.CrossRefGoogle Scholar
Kememes, P.A., Reginato, L.C.A.Rosa, A.J.M., Parker, LV., Razook, G.A., Figuereido, L.A., Silva, N.A., L, M.A.., Etchegaray, & Coutinho, L.L.. 1999. k-casein, β-Lactoglobulin and growth hormone allele frecuencies and genetic distances in Nelore, Gyr, Guzerá, Camcu, Charolais, Canchin an Santa Gertrudis cattle. Genet. Mol. Biol. 22: 539541.CrossRefGoogle Scholar
Kidd, K.K., Stone, W. H.. Cornelia, C.. Carenzi, M.. Casati, M. & Rognoni, G.. 1980. Immunogenetic and population genetic analyses of Iberian cattle. Anim Blood Groups Biochem Genet., 11(1): 2138.CrossRefGoogle ScholarPubMed
Lara, M.A.C., Gama, L.T.. Bufarah, G.Sereno, J.R.B., Celegato, E.M.L. & de Abreu, U.P.. 2002. Genetic polymorphism at the k-casein locus in Panteneiro cattle. Arch. Zootec. 51: 99105.Google Scholar
Lien, S., Kaminski, S., Alestrom, P. & Rogne, S.. 1993. A simple and powerful method for linkage analysis by amplification of DNA from single sperm cell. Genomics, 16(1): 4144.CrossRefGoogle Scholar
Litwiflczuk, Z & Król, J.. 2002. Polymorphism of main milk proteins in beef cattle maintained in East-Central Poland. Animal Science Papers and Report, Vol 20 (suppl. 1): 3340.Google Scholar
Medrano, J.F. & Sharrow, L.. 1991. Genotyping of bovine β-casein loci by restriction site modification of polymerase chain reaction (PCR) amplified genomic DNA. J. Dairy Sci., 74 (suppl), 282.Google Scholar
Medrano, J.F. & Aguilar-Córdova, E.. 1990. Polymerase chain reaction amplification of bovine β-Lg genomic sequences and identification of genetic variants by RFLP analysis. Animal Biotechnology, 1(1): 7377.CrossRefGoogle Scholar
Ng-Kwai-Hang, K.F., Monardes, A.G. & Hayes, J.F.. 1990. Association between genetic polymorphism of milk protein and production traits during three lactations. J. Dairy Sci., 73: 34143420.CrossRefGoogle Scholar
Osta, R. 1994. Caracterización genética de proteínas lácteas y sexaje de embriones en ganado vacuno mediante la aplicación de la biotecnología al análisis del DNA. Tesis Doctoral, Facultad de Veterinaria, Universidad de Zaragoza, España.Google Scholar
Osta, R., Marcos, S.. Martin, I.. García-Muro, E. & Zaragoza, P.. 1995. Caracterización genética de proteínas lácteas en ganado vacuno mediante análisis de DNA. VI Jornadas sobre producción animal. Vol. Extra, N°16, Tomo I.Google Scholar
Pérez-Beato, O. & Granado, A.. 1982. El alelo a-LaA como marcador genético en el cruce Cebú Cubano- Holstein Friesian. Rev. Salud Animal, 4(1): 145148.Google Scholar
Pérez-Beato, O. & Fernández, M.H.. 1981. Distancia genética y heterocigosis en ganado tropical. Reporte preliminar. Rev. Salud Anim. 3(2): 161168.Google Scholar
Rahali, V. & Menard, J.L.. 1991. Influence des variants genetiques de la lactoglobuline et de la k-caseine sur la composition du lait et son aptitude fromagere. Lait 71: 275297.CrossRefGoogle Scholar
Ripoli, MV., Giovambattista, G.De Luca, J.C.. Labarta, F.. Echenique, J.. Casas, S.. Carrizo, E.. Sanchez Mera, M. & Duluot, F.N.. 1999. Formación de un plantel base de ganado bovino criollo argentino para la producción lechera. Efecto sobre las frecuencias génicas de los loci de la k-caseína, α s1-caseína y prolactina. Arch Zootec. 48(181): 101106.Google Scholar
Rodriguez-Zas, S.L., Southey, B.RHeyen, D.W. & Lewin, H.A.. 2002 Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data, J. Dairy Sci. 85: 26812691CrossRefGoogle Scholar
Sánchez, A., Betancourt, A. & Guti, C.érrez. 1977. Cromosomas del ganado Criollo. Congreso Panamericano de Veterinaria y Zoonosis. Colombia.Google Scholar
Sartore, G. & Stasio, I.. 1984. Prospects for the selection of dairy cattle on the basis of frequencies of specific genetic variants. Industria del latte, 20: 5556.Google Scholar
Swofford, D.L. & Selander, R.B.. 1989. BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematic. Release 1.7. Champaing, IL, Ilinois Natural History Survey.Google Scholar
Tambasco, M.D. 1998. Detecao de polymorphism dos genes de k-casina, β-lactoglobulina em animais da raca Jersey. Monografia: Universidad Federal de Sao Carlos. S.P.Google Scholar
Threadgill, D.W. & Womack, J.E.. 1990. Genomic analysis of the major bovine milk protein genes. Nucl. Acid Research, 18, 69356942.CrossRefGoogle ScholarPubMed
Uffo, O. & Mart, S.ínez. 2002. Amplificación por PCR de los genes que codifican para la α-lactoalbúmina β-lactoglobulina y la k-caseína bovinas en una recordista y parte de su descendencia Rev. Salud Animal 24(1): 2226Google Scholar
Van Eenennaam, A.L. & Medrano, J.F.. 1991. Differences in allelic protein expression in milk of heterozygous k-casein cows. J. Dairy Sci., 74: 14911496.CrossRefGoogle Scholar
Veli, E., Rivas, E.. Rivas, V.. Verastegui, M. & Pastor, S.. 2004, Evaluacion de la variabilidad de genes de kappa caseina en poblaciones de bovinos criollos de ticllos y huaschao, región ancash online en: www.inia.gob.pe/genetica/zoogeneticos/ArticuloVCongreso.pdfGoogle Scholar
Zardowny, D & Kühnlein, U.. 1990. The identification of the k-casein genotype in Holstein dairy cattle using the polymerase chain reaction. Theor. Appl. Genet, 80: 631634.Google Scholar