Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-23T07:10:37.689Z Has data issue: false hasContentIssue false

Morphological features of indigenous chicken ecotype populations of Kenya

Published online by Cambridge University Press:  08 December 2014

K. Ngeno*
Affiliation:
Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, P. O. Box 536, 20115 Egerton, Kenya Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
E.H. van der Waaij
Affiliation:
Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
A.K. Kahi
Affiliation:
Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, P. O. Box 536, 20115 Egerton, Kenya
J.A.M. van Arendonk
Affiliation:
Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
*
Correspondence to: K. Ngeno, Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands. email: aarapngeno@gmail.com
Get access

Summary

This study characterized indigenous chicken (IC) ecotypes morphologically. Five IC ecotypes studied were Kakamega (KK), Siaya (BN), West Pokot (WP), Narok (NR) and Bomet (BM). Data on morphological features were collected from 1 580 chickens and 151 for zoometric measurements. Descriptive statistics, non-parametric and F tests were used in analysis. A non-parametric Kruskal–Wallis, Binomial test and Mann–Whitney U test was used to evaluate whether the ecotype have effects on the qualitative morphological variables. Zoometric measurements was analysed with the PROC GLM of SAS. Results revealed that, black, black-white striped, brown and red body plumage colours were significantly different (P < 0.05) between the ecotypes. Feather morphology (%) were not significantly different (P > 0.05). Distribution of body feathers (%), comb types (%) and zoometric measurements were significantly different (P < 0.05). Eye colours varied significantly (P < 0.001) within the ecotypes unlike between the populations. In conclusion, IC ecotypes studied are heterogeneous population with huge variability in morphological features.

Résumé

Cette étude a cherché à caractériser d'un point de vue morphologique des écotypes de poule autochtone. Les cinq écotypes étudiés ont été Kakamega (KK), Siaya (BN), Pokot Occidental (PO), Narok (NR) et Bomet (BM). L'information concernant les traits morphologiques a été obtenue sur 1 580 volailles alors que les mesures zoométriques ont été prises sur 151. Les données ont été analysées avec de la statistique descriptive, des tests non-paramétriques et le test F. Un test non-paramétrique Kruskal-Wallis, un test Binomial et un test Mann-Whitney U ont été utilisés pour évaluer si l'écotype avait un effet sur les variables morphologiques qualitatives. Les mesures zoométriques ont été analysées avec la procédure GLM du logiciel SAS. Les résultats ont révélé que la couleur du plumage corporel (noir, barré noir-blanc, marron et rouge) différait significativement (P < 0.05) entre les écotypes. Par contre, aucune différence significative (P > 0.05) n'a été décelée pour la morphologie des plumes. La distribution des plumes du corps (en pourcentage), les types de crête (en pourcentage) et les mesures zoométriques ont aussi présenté des différences significatives (P < 0.05). La couleur des yeux a varié de manière significative (P < 0.001) au sein des écotypes mais pas entre les populations. En conclusion, les écotypes autochtones de poule étudiés constituent une population hétérogène ayant une énorme variabilité dans les caractères morphologiques.

Resumen

Este estudio llevó a cabo una caracterización morfológica de ecotipos autóctonos de gallina. Los cinco ecotipos estudiados fueron Kakamega (KK), Siaya (BN), Pokot Occidental (PO), Narok (NR) y Bomet (BM). La información sobre los rasgos morfológicos se tomó de 1 580 aves mientras que se usaron 151 para las medidas zoométricas. Los datos fueron analizados con estadística descriptiva, tests no paramétricos y el test F. Se usaron un test no paramétrico Kruskal-Wallis, un test Binomial y un test Mann-Whitney U para evaluar si el ecotipo tenía efecto sobre las variables morfológicas cualitativas. Las medidas zoométricas se analizaron con el PROC GLM de SAS. Los resultados mostraron que el color del plumaje corporal (negro, barrado negro-blanco, marrón y rojo) difería significativamente (P < 0.05) entre los ecotipos. Por el contrario, no se dieron diferencias significativas (P > 0.05) para la morfología de las plumas. La distribución de las plumas del cuerpo (en porcentaje), los tipos de cresta (en porcentaje) y las medidas zoométricas también difirieron significativamente (P < 0.05). El color de los ojos varió de manera significativa (P < 0.001) dentro de los ecotipos pero no entre las poblaciones. En conclusión, los ecotipos de gallina autóctona estudiados constituían una población heterogénea con una amplia variabilidad en los caracteres morfológicos.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abera, M. & Tegene, N. 2011. Phenotypic and morphological characterization of Indigenous chicken population in Southern region of Ethiopia. Anim. Genet. Resour. Inf. J., 49: 1931.Google Scholar
Apuno, A.A., Mbap, S.T. & Ibrahim, T. 2011. Characterization of local chickens (Gallus gallus domesticus) in Shelleng and Song Local Government Areas of Adamawa State. Nigeria, 2151–7525 (available at http://www.scihub.org/ABJNA).Google Scholar
Blas, J., Perez-Rodriguez, L., Bortolotti, G.R., Vinuela, J. & Marchant, T.A. 2006. Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signalling. Proc. Natl. Acad. Sci. USA, 103: 1863318637.Google Scholar
Blount, J.D., Metcalfe, N.B., Birkhead, T.R. & Surai, P.F. 2003. Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300: 125127.Google Scholar
Bogale, K. 2008. In situ characterization of local chicken eco-type for functional traits and production system in fogera woreda, amhara regional state. Haramaya University, Ethiopia, pp. 123, (available at http://mahider.ilri.org/bitstream/handle/10568/679/ThesisBogaleInsitu.pdf?sequence=1).Google Scholar
Cabarles, J.C., Lambio, Jr A.L., Vega, S.A., Capitan, S.S. & Mendioro, M.S. 2012. Distinct morphological features of traditional chickens (Gallus gallus domesticus L.) in Western Visayas, Philippines. Animal Genetic Resources/Ressourcesgénétiquesanimales/Recursosgenéticos animals, Available on CJO 2012 doi: 10.1017/S2078633612000410.CrossRefGoogle Scholar
Cuesta, M.L. 2008. Pictorial Guidance for Phenotypic Characterization of Chickens and Ducks. Food and Agriculture Organization of the United Nations, Rome, Italy. FAOGCP/RAS/228/GER Working Paper No.15. Rome.Google Scholar
Dana, N., Dessie, T., van der Waaij, H.E. & van Arendonk, A.M.J. 2010. Morphological features of indigenous chicken populations of Ethiopia. Anim. Genet. Resour., 46: 1123.Google Scholar
Duguma, R. 2006. Phenotypic characterization of some indigenous chicken ecotypes of Ethiopia. Livestock Res. Rural Dev., 18(131) (available at http://www.lrrd.org/lrrd18/9/dugu18131.htm)Google Scholar
Egahi, J.O., Dim, N.I., Momoh, O.M. & Gwasa, D.S. 2010. Variations in qualitative traits in the Nigerian local chicken. J. Poult. Sci. , 9(10): 978979.Google Scholar
Eriksson, J., Greger, L., Ulrika, G., Bertrand, B., Tixier-Boichard, M., Strömstedt, L., Wright, D., Jungerius, A., Vereijken, A., Randi, E., Jensen, P., Andersson, L. 2008. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 4(2):e1000010.Google Scholar
FAO. 2012. Phenotypic characterization of animal genetic resources. Food and Agriculture Organization of the United Nations, Rome, Italy (available at http://www.fao.org/docrep/015/i2686e/i2686e00.pdf).Google Scholar
Fayeye, T.R. & Oketoyin, A.B. 2006. Characterization of the Fulani-ecotype chicken for thermoregulatory feather gene. Livestock Res. Rural Dev. 18: 45, (available at http://www.lrrd.org/lrrd18/3/faye18045.htm).Google Scholar
Francesch, A., Villalba, I. & Cartañà, M. 2011. Methodology for morphological characterization of chicken and its application to compare Penedesenca and Empordanesa breeds. Anim. Genet. Resources 48: 7984.Google Scholar
Goldstein, G., Flory, K., Browne, B., Majid, S., Ichida, J.M. & Burtt, J.E.H. 2004. Bacterial degradation of black and white feathers. Auk 121: 656659.Google Scholar
Halima, H.M. 2007. Phenotypic and genetic characterization of indigenous chicken populations in Northwest Ethiopia. University of Free State, Bloemfontein, South Africa (Ph.D. thesis).Google Scholar
Hill, G.E., & McGraw, K.J. 2006. Bird coloration: mechanisms and measurements, Vol. 1, Cambridge, MA, Harvard University Press.Google Scholar
Kabir, M., Oni, O.O., Akpa, G.N. & Adeyinka, I.A. 2006. Heritability estimates and the Interrelationships of body weight and shank length in Rhode Island Red and White Chickens. Pak. J. Biol. Sci., 9: 28922896.Google Scholar
Kingori, A.M., Wachira, A.M. & Tuitoek, J.K. 2010. Indigenous chicken production in Kenya: a review. Int. J. Poult. Sci., 9: 309316.Google Scholar
Maina, J.O. 2000. Morphological and molecular characterization of Kenyan indigenous chicken. Egerton University, Njoro, Kenya (Ph.D. thesis).Google Scholar
Mani, R.I., Abdullah, A.R. & Von Kaufmann, R. 1991. Comparison of scale weight to type estimates and their relationship with condition scores in Bunaji cattle. Nigerian J. Anim. Prod. 18: 7881.Google Scholar
McCartney, L.K., Ligon, R.A., Butler, M.W., DeNardo, D.F., & McGraw, K.J. 2014. The effect of carotenoid supplementation on immune system development in juvenile male veiled chameleons (Chamaeleo calyptratus). Front. Zool. 11: 26.Google Scholar
Meoweather. 2013. Weather history. http://www.meoweather.com/ Google Scholar
MOLD (Ministry of Livestock Development). 2010. Animal Production Division Annual Report, Ministry of Livestock Development, Nairobi, Kenya, pp 52.Google Scholar
Msoffe, P.L.M., Minga, U.M., Olsen, J.E., Yongolo, M.G.S., Juul-Madsen, H.R., Gwakisa, P.S. & Mtambo, M.M.A. 2001. Phenotypes including immunocompetence in scavenging local chicken ecotypes of Tanzania. Trop. Anim. Health Prod. 33: 341354.Google Scholar
Mwale, M. & Wambua, H. 2008. Kakamega district food security rapid assessment report February. Kakamega, Kenya.Google Scholar
Ndirangu, J.K., Kimani, C.W., Nyachoti, C.M., Mbugua, P.N. & Janssen, M.M.W.A. 1991. Characterization of indigenous chicken on the basis of morphological characteristics and egg features. In Paper presented at The 3rd KARI Scientific Conf., Nairobi, Kenya (unpublished).Google Scholar
Nesamvumi, A.E., Malaudzi, J., Ramanyimi, N. D. & Taylor, G.J. 2000. Estimation of body weight in Ngunni-type cattle under communal conditions. South Afr. J. Anim. Sci. 30: 9798.Google Scholar
Nesheim, C.M., Austic, E.R. & Card, E.L. 1979. Poultry production, 12th edition. Philadelphia, Lea and Febiger, pp. 5892.Google Scholar
Nishida, T., Rerkamnuaychoke, W., Tung, D.G., Saignaleus, S., Okamoto, S., Kawamoto, Y., Kimura, J., Kawabe, K., Tsunekawa, N., Otaka, H. & Hayashi, Y. 2000. Morphological identification and ecology of Red Jungle fowl in Thailand, Laos, and Vietnam. Anim. Sci. J. 71(5): 470480.Google Scholar
Njenga, S.K. 2005. Production and socio-cultural aspects of local poultry phenotypes in coastal Kenya . Danish Institute of Agricultural Sciences, Tjele, Denmark (M.Sc. thesis).Google Scholar
Nyaga, P.N. 2007. Kenya poultry sector review. Rome, Italy, Food and Agricultural Organization of the United Nations.Google Scholar
Ohta, N., Kajita, M., Kusuhara, S. & Kakiwaza, R. 2000. Genetic differentiation and phylogenetic relationships among the species of Gallus (Jungle fowl) and the chicken. Jpn. Poult. Sci. 37: 3339.Google Scholar
Ojo, V. 2002. Incidence and influence of Naked neck and frizzle genes on body size of local chickens. University of Ilorin, Nigeria (M.Sc. thesis).Google Scholar
Okeno, T.O. 2012. Production systems, breeding objectives and selection schemes for indigenous chicken genetic resources in Kenya. Humboldt-Universitätzu Berlin, Germany (PhD dissertation).Google Scholar
Pratt, D.J., Greenway, P.J. & Gwynne, M.D. 1966. A classification of East African rangeland, with an appendix on terminology. J. Appl. Ecol. 3: 369–82.Google Scholar
Protas, M.E. & Patel, N.H. 2008. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24: 425446.Google Scholar
SAS. 2008. User's Guide, Version 9.2, SAS Institute Inc., Cary, NC.Google Scholar
Siaya District Environment. 2007. District environment action plan (DEAP) Bondo District report. Bondo, Kenya, District Environment Office, 108 pp.Google Scholar
Seemann, M. 2000. Factors which influence pigmentation. Lohmann 24: 2024.Google Scholar
Smyth, J. 1990. Genetics of plumage, skin, and eye pigmentation in chicken. In R.Google Scholar
Somes, R. 1990b. Mutations and major variants of plumage and skin in chicken. In Crawford, R., ed. Poultry breeding and genetics, pp. 169208. Amsterdam, The Netherlands, Elsevier Science.Google Scholar
Sombroek, W.C., Braun, H.M.H. & van der Pour, B.J.A. 1982. Explanatory Soil Map and Agro-climatic Zone Map of Kenya. Report E1. National Agricultural Laboratories, Soil Survey Unit, Nairobi, Kenya, 56 pp.Google Scholar
SPSS. 2011. Statistical package for social sciences. SPSS 20.0 for Windows. Chicago, SPSS Inc.Google Scholar
Ssewanyana, E., Ssali, A., Kasadha, T., Dhikusooka, M., Kasoma, P., Kalema, J., Kwatotyo, B.A. & Aziku, L. 2003b. Characterisation of indigenous chickens in Uganda. In Proc. Livestock Research Programme (LSRP) Annual Scientific Workshop, in collaboration with DANIDA's Agricultural Sector Research Programme (ASPS) and the National Agricultural Research Organisation (NARO).Google Scholar
Stettenheim, P.R. 2000. The integumentary morphology of modern birds – an overview. Am. Zool. 40: 461477.Google Scholar
Stoddard, M.C. & Prum, R.O. 2011. How colourful are birds? Evolution of the avian plumage colour gamut. Behav. Ecol. 22: 10421052.Google Scholar
Tadelle, D., Million, T, Alemu, Y. & Peters, K.J. 2003a. Village chicken production systems in Ethiopia: 2. Use patterns and performance valuation and chicken products and socio-economic functions of chicken. Livest. Res. Rural Dev., (available at http://www.cipav.org.co/lrrd/lrrd15/1/tadeb151.htm).Google Scholar
Teketel, F. 1986. Studies on the meat production potential of some local strains of chicken in Ethiopia. Trop. Anim. Health Prod. 33: 521537.Google Scholar