Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T00:14:05.178Z Has data issue: false hasContentIssue false

Sensitivity, Precision, and Accuracy: Their Roles in Ceramic Compositional Data Bases

Published online by Cambridge University Press:  20 January 2017

Ronald L. Bishop
Affiliation:
Conservation Analytical Laboratory, Smithsonian Institution, Washington, DC 20560
Veletta Canouts
Affiliation:
Archeological Assistance Division, National Park Service, Washington, DC 20013 and Conservation Analytical Laboratory, Smithsonian Institution, Washington, DC 20560
Patricia L. Crown
Affiliation:
Department of Anthropology, Southern Methodist University, Dallas, TX 75275
Suzanne P. de Atley
Affiliation:
Research Associate, Museum, University of Colorado, Boulder, CO 80309

Abstract

Differences in analytical sensitivity, precision, and accuracy exist among techniques and laboratories involved in the chemical analysis of archaeological ceramics. Large differences in these analytical parameters become significant in the formulation of data bases where comparability of the data is being sought. Small differences become significant when comparing pottery produced from clay resources located within a discrete geological environment. To better assess and report on the analytical results being obtained from laboratories, neutron-activation analysis and X-ray fluorescence are discussed relative to the level of precision required for ceramic characterization studies, the use of standards, and the preparation and submission of samples for commercial laboratory analysis.

Résumé

Résumé

Las diferencias en sensibilidad analítica, precisión, y exactitud que existen entre distintos laboratorios y las técnicas que estos emplean en el análisis químico de muestras de cerámica arqueológica producen grandes diferencias en parámetros analíticos. Estas diferencias vienen a ser significativamente importantes en la formulatión de bancos de datos para lo cual se busca compatibilidad en los datos. Así mismo, pequeñas diferencias vienen a ser significativas cuando se compara cerámica producida con fuentes de arcilla localizadas en una determinada area geológica. Para una mejor evaluatión y reporte sobre los resultados analíticos obtenidos de los laboratorios, análisis de activatión neutrónica y fluorescencia de rayos X son discutidos en relatión con el nivel de precisión requerido para la caracterización de estudios cerámicos, el uso de standards, y preparatión y presentatión de muestras para análisis comercial en el laboratorio.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Abascal-M, R., Harbottle, G., and Sayre, E. V. 1974 Correlation Between Terra Cotta Figurines and Pottery from the Valley of Mexico and Source Clays by Activation Analysis, In Archaeological Chemistry, edited by Beck, C. W., pp. 81-99. Advances in Chemistry Series 138. American Chemical Society, Washington, D. C. Google Scholar
Attas, M., Fossey, J. M., and Yaffe, L. 1984 Corrections for Drill-bit Contamination in Sampling Ancient Pottery for Neutron Activation Analysis. Archaeometry 26: 104-107.Google Scholar
Bishop, R. L. 1987 Ceramic Paste Compositional Chemistry: Initial Observations of Variation in the Tucson Basin. In The Archaeology of the San Xavier Bridge Site (AZ BB: 13: 14) Tucson Basin, Southern Arizona, edited by Ravesloot, J. C., E, Appendix, pp. 395-408. Archaeological Series No. 171. Cultural Resource Management Division, Arizona State Museum, Tucson.Google Scholar
Bishop, R. L., Blackman, M. J., and Olin, J. S. 1983 SARCAR: A New Archaeometric Resource. In ICOM Committee for Conservation, 7th Triennial Meeting, Copenhagen, edited by Froment, D. de, pp. 84. 8. 1-2. International Council of Museums, Paris.Google Scholar
Bishop, R. L., Canouts, V., DeAtley, S. P., Qoyawayma, A., and Aikins, C. C. W. 1988 The Formation of Ceramic Analytical Groups: Hopi Pottery Production and Exchange, A. C. 1300-1600. Journal of Field Archaeology 15: 317-337.Google Scholar
Bishop, R. L., and Neff, H. 1989 Compositional Data Analysis in Archaeology. In Archaeological Chemistry IV, edited by Allen, R. O., pp. 57-86. Advances in Chemistry Series 220. American Chemical Society, Washington, D. C. Google Scholar
Bishop, R. L., Rands, R. L., and Holley, G. R. 1982 Ceramic Compositional Modeling in Archaeological Perspective. In Advances in Archaeological Method and Theory, vol. 5, edited by Schiffer, M. B., pp. 275-331. Academic Press, New York.Google Scholar
Blackman, M. J. 1986 Precision in Routine I. N. A. A. Over a Two Year Period at the NBSR. In NBS Reactor: Summary of Activities July 1985 Through June 1986, edited by Shorten, F. J., pp. 122-126. NBS Technical Note 1231. U. S. Department of Commerce/National Bureau of Standards, Gaithersburg, Maryland.Google Scholar
Crown, P. L. 1983 An X-ray Fluorescence Analysis of Hohokam Ceramics. In Material Culture, edited by Teague, L. S. and Crown, P. L., pp. 277-310. Hohokam Archaeology Along the Salt-Gila Aqueduct Central Arizona Project volume VIII. Archaeological Series No. 150. Cultural Resource Management Division, Arizona State Museum, University of Arizona, Tucson.Google Scholar
Crown, P. L., and Bishop, R. L. 1987 Convergence in Ceramic Manufacturing Traditions in the Late Prehistoric Southwest. Paper presented at the 52nd Annual Meeting of the Society for American Archaeology, Toronto.Google Scholar
Crown, P. L., Schwalbe, A., and London, J. R. 1984 X-ray Fluorescence Analysis of Materials Variability in Las Colinas Ceramics. Ms. in possession of author.Google Scholar
Culbert, T. P., and Schwalbe, L. A. 1987 X-ray Fluorescence Survey of Tikal Ceramics. Journal of Archaeological Science 14: 635-657.Google Scholar
Deutchman, H. L. 1980 Chemical Evidence of Ceramic Exchange on Black Mesa. In Models and Methods in Regional Exchange, edited by Fry, R. E., pp. 119-133. SAA Papers No. 1. Society for American Archaeology, Washington, D. C. Google Scholar
Earle, T. K., and Ericson, J. E. 1977 Exchange Systems in Archaeological Perspective. In Exchange Systems in Prehistory, edited by Earle, T. K. and Ericson, J. E., pp. 3-12. Academic Press, New York.Google Scholar
Flanagan, F. J. 1967 U. S. Geological Survey Silicate Rock Standards. Geochimica et Cosmochimica Acta 31: 289-308.Google Scholar
Flanagan, F. J. 1969 U. S. Geological Survey Standards—II. First Compilation of Data for the New U. S. G. S. Rocks. Geochimica et Cosmochimica Acta 33: 81.Google Scholar
Flanagan, F. J. 1979 1972 Values for International Geochemical Reference Samples. Geochimica et Cosmochimica Acta 37: 1189.Google Scholar
Hancock, R. G. V., Milet, N. B., and Mills, A. J. 1986 A Rapid INAA Method to Characterize Egyptian Ceramics. Journal of Archaeological Science 13: 107-117.Google Scholar
Harbottle, G. 1976 Activation Analysis in Archaeology. In Radiochemistry: A Specialist Periodical Report, vol. 3, edited by A, G. W.. Newton, pp. 33-72. The Chemical Society, London.Google Scholar
Harbottle, G. 1982a Provenience Studies Using Neutron Activation Analysis: The Role of Standardization. In Archaeological Ceramics, edited by Olin, J. S. and Franklin, A. D., pp. 67-78. Smithsonian Press, Washington, D. C. Google Scholar
Harbottle, G. 1982b Chemical Characterization in Archaeology. In Contexts for Prehistoric Exchange, edited by Ericson, J. E. and Earle, T. K., pp. 13-52. Academic Press, New York.Google Scholar
Ives, D. J. 1975 Trace Element Analyses of Archaeological Materials. American Antiquity 40: 235-236.Google Scholar
Kra, R. 1986 Standardizing Procedures for Collecting, Submitting, Recording, and Reporting Radiocarbon Samples. Radiocarbon 28(2A): 765-775.Google Scholar
Levinson, A. A. 1974 Introduction to Exploration Geochemistry. Applied Publishing, Maywood.Google Scholar
Matson, F. R. 1982 Selection and Conservation of Study Materials and of the Data Obtained. In Future Directions in Archaeometry, edited by Olin, J. S., pp. 128-131. Smithsonian Institution, Washington, D. C. Google Scholar
Olin, J. S., and Blackman, M. J. 1989 Compositional Classification of Mexican Majolica Ceramics of the Spanish Colonial Period. In Archaeological Chemistry IV, edited by Allen, R. O., pp. 87-112. History of Chemistry Series 220. American Chemical Society, Washington, D. C. Google Scholar
Olinger, B. 1987a Pottery Studies Using X-ray Fluorescence, part 1. An Introduction, Nambe Pueblo As an Example. Pottery Southwest 14(l): 1-2.Google Scholar
Olinger, B. 1987b Pottery Studies Using X-ray Fluorescence, part 2: Evidence for Prehistoric Reoccupation of the Pajarito Plateau. Pottery Southwest 14(2): 2-5.Google Scholar
Olinger, B. 1988 Pottery Studies Using X-ray Fluorescence, Part 3: The Historic Pottery of the N. Tewa. Pottery Southwest 15(4): 1-6.Google Scholar
Perlman, I., and Asaro, F. 1969 Pottery Analysis by Neutron Activation. Archaeometry 11: 21-52.Google Scholar
Perlman, I., and Asaro, F. 1971 Pottery Analysis by Neutron Activation. In Science and Archaeology, edited by Brill, R. H., pp. 55-64. M. I. T. Press, Cambridge.Google Scholar
Rapp, G. R., Jr. 1985 The Provenance of Artifactual Raw Materials. In Archaeological Geology, edited by Rapp, G. R., Jr., and Gilford, J. A., pp. 353-374. Yale University Press, New Haven.Google Scholar
Sayre, E. V. 1982 Preservation and Coordination of Archaeometric Data: The Whole Is Greater Than the Sum of Its Parts. In Future Directions in Archaeometry, edited by Olin, J. S., pp. 116-120. Smithsonian Institution, Washington, D. C. Google Scholar
Tuggle, D. H., Kintigh, K. W., and Reid, J. J. 1982 Trace-Element Analysis of White Wares. In Ceramic Studies, edited by Reid, J. J., pp. 22-38. Cholla Project Archaeology, volume 5. Archaeological Series No. 161. Cultural Resource Management Division, Arizona State Museum, University of Arizona, Tucson.Google Scholar
Whittlesey, S. M. 1987 Problems of Ceramic Production and Exchange: An Overview. In The Archaeology of the San Xavier Bridge Site (AZ BB: 13: 14) Tucson Basin, Southern Arizona, edited by C. Ravesloot, John, pp. 99-116. Archaeological Series No. 171, part 3. Cultural Resource Management Division, Arizona State Museum, University of Arizona, Tucson.Google Scholar
Wilcock, J. D., Otlet, R. L., Walker, A. J., Charlesworth, S. A., and Drodge, J. 1986 Establishment of a Working Data Base for the International Exchange of 14C Data Using Universal Transfer Formats. Radiocarbon 28(2A): 781-787.Google Scholar
Yeh, S-J., and Harbottle, G. 1986 Intercomparison of the Asaro-Perlman and Brookhaven Archaeological Ceramic Analytical Standards. Journal of Radioanalytical and Nuclear Chemistry, Articles 97(2): 279-291.Google Scholar
Yellin, J., Perlman, I., Asaro, F., Michel, H. V., and Mosier, D. F. 1978 Comparison of Neutron Activation Analysis from the Lawrence Berkeley and Laboratory and the Hebrew University. Archaeometry 20: 91-96.Google Scholar