Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-08T06:34:50.363Z Has data issue: false hasContentIssue false

Impact of Carnivore Ravaging on Zooarchaeological Measures of Element Abundance

Published online by Cambridge University Press:  20 January 2017

Curtis W. Marean
Affiliation:
Department of Anthropology, Doctoral Program in Anthropological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-4364
Lillian M. Spencer
Affiliation:
Department of Anthropology, Doctoral Program in Anthropological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-4364

Abstract

Most zooarchaeologists estimate limb-bone abundance from limb ends. Researchers have provided detailed documentation of the preferential destruction by carnivores of limb ends (Binford 1981; Binford et al. 1988; Blumenschine 1988; Brain 1981; Marean et al. 1990; Orloff and Marean 1990; Sutcliffe 1970). Others have observed differences between limb abundances calculated on limb shafts vs. ends, suggesting shaft pieces may provide more accurate estimates of original element abundance in carnivore-ravaged assemblages (Bunn 1986; Bunn and Kroll 1986; Blumenschine 1988; Klein 1975; Marean et al. 1990; Orloff and Marean 1990). However, the exact quantitative effect of carnivore ravaging on measures of element abundance has never been investigated. We provide an experimental test of the accuracy of different bone portions for estimating the original element abundance after carnivore ravaging. Spotted hyenas were allowed to ravage 33 simulated archaeological sites of known element abundance. Estimates of abundance calculated on limb ends differ greatly from original bone abundance, and estimates based on proximal/distal-shaft pieces are also inaccurate. Estimates from middle-shaft fragments, however, are uniquely accurate. These experimental data mandate reanalysis of assemblages where limb frequencies were calculated from limb ends and carnivore ravaging is implicated, and experimentally vindicate observations originally provided by Klein (1975).

Résumé

Résumé

La mayoría de los zooarqueólogos estiman la abundancia de huesos correspondientes a los miembros a partir de las porciones finales de tales huesos. Existe detallada documentación acerca de la destrucción preferencial de tales partes por obra de carnívoros (Binford 1981; Binford et al. 1988; Blumenschine 1988; Brain 1981; Marean et al. 1990; Orloff y Marean 1990; Sutcliffe 1970). Otros han observado diferencias entre la abundancia de miembros calculada en base a las diáfisis y las epífisis de los miembros, sugiriendo que los restos de diáfisis pueden proporcionar estimaciones más exactas de la abundancia original de elementos en conjuntos afectados por carnívoros (Bunn 1986; Bunn y Kroll 1986; Blumenschine 1988; Klein 1975; Marean et al. 1990; Orloff y Marean 1990). Sin embargo, el efecto cuantitativo preciso del descarne por obra de carnívoros sobre las medidas de abundancia de elementos no ha sido investigado. Se ofrece una prueba experimental de la exactitud de diferentes porciones de huesos para estimar la abundancia original de elementos luego del descarne por carnívoros. Se permitió que hienas manchadas atacaran 33 sitios arqueológicos simulados con abundancias de elementos conocidas. Las estimaciones de abundancia calculadas sobre la base de epífisis difieren significativamente de la abundancia original de huesos; estimaciones basadas en fragmentos de diáfisis proximales/distales son también inexactas, en tantos que cálculos sobre fragmentos centrales de diáfisis proporcionan estimaciones singularmente precisas. Estos datos experimentales exigen un nuevo análisis de conjuntos en los que las frecuencias de extremidades han sido calculadas a partir de epífisis existiendo la posibilidad de actividad por parte de carnívoros. Las observaciones originalmente presentadas por Klein (1975) son reinvicadas a través de los resultados experimentales.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Behrensmeyer, A. K. 1978 Taphonomic and Ecologic Information from Bone Weathering. Paleobiology 4 : 150162.Google Scholar
Binford, L. R. 1981 Bones : Ancient Men and Modern Myths. Academic Press, New York.Google Scholar
Binford, L. R. 1984 The Fauna! Remains from Klasies River Mouth. Academic Press, New York.Google Scholar
Binford, L. R., Mills, M. G. L., and Stone, N. M. 1988 Hyena Scavenging Behavior and Its Implications for Interpretation of Faunal Assemblages from FLK22 (the Zinj Floor) at Olduvai Gorge. Journal of Anthropological Archaeology 7 : 99135.CrossRefGoogle Scholar
Blumenschine, R. J. 1986 Early Hominid Scavenging Opportunities : Implications of Carcass Availability in the Serengeti and Ngorongoro Ecosystems. BAR International Series 283. British Archaeological Reports, Oxford.Google Scholar
Blumenschine, R. J. 1988 An Experimental Model of the Timing of Hominid and Carnivore Influence on Archaeological Bone Assemblages. Journal of Archaeological Science 15 : 483502.Google Scholar
Brain, C. K. 1981 The Hunters or the Hunted. University of Chicago Press, Chicago.Google Scholar
Bunn, H. T. 1986 Patterns of Skeletal Representation and Hominid Subsistence Activities at Olduvai Gorge, Tanzania, and Koobi Fora, Kenya. Journal of Human Evolution 15 : 673690.Google Scholar
Bunn, H. T., and Kroll, E. M. 1986 Systematic Butchery by Plio/Pleistocene Hominids at Olduvai Gorge, Tanzania. Current Anthropology 27 : 431452.Google Scholar
Bunn, H. T., and Kroll, E. M. 1988 Reply to Binford. Current Anthropology 29 : 135149.Google Scholar
Bunn, H. T., Bartram, L. E., and Kroll, E. M. 1988 Variability in Bone Assemblage Formation from Hadza Hunting, Scavenging, and Carcass Processing. Journal of Anthropological Archaeology 7 : 412457.CrossRefGoogle Scholar
Bunn, H. T., Harris, J. W. K., Isaac, G. L., Kaufulu, Z., Kroll, E. M., Schick, K., Toth, N., and Behrensmeyer, A. K. 1980 Fxjj50 : An Early Pleistocene Site in Northern Kenya. World Archaeology 12 : 109136.CrossRefGoogle Scholar
Davis, S. J. 1987 The Archaeology of Animals. Yale University Press, New Haven.Google Scholar
Ewer, R. F. 1973 The Carnivores. Cornell University Press, Ithaca.Google Scholar
Gifford, D. P., and Crader, D. C. 1977 A Computer Coding System for Archaeological Faunal Remains. American Antiquity 42 : 225238.CrossRefGoogle Scholar
Haynes, G. 1983 A Guide for Differentiating Mammalian Carnivore Taxa Responsible for Gnaw Damage to Herbivore Limb Bones. Paleobiology 9 : 164172.Google Scholar
Hill, A. 1983 Hyaenas and Early Hominids. In Animals and Archaeology 1 : Hunters and Their Prey, edited by Clutton-Brock, J. A. and Grigson, C., pp. 8793. BAR International Series 163. British Archaeological Reports, Oxford.Google Scholar
Horwitz, L. K., and Smith, P. 1988 The Effects of Striped Hyaena Activity on Human Remains. Journal of Archaeological Science 15 : 471-481.Google Scholar
Klein, R. G. 1975 Paleoanthropological Implications of the Nonarchaeological Bone Assemblage from Swartklip I, Southwestern Cape Province, South Africa. Quaternary Research 5 : 275288.Google Scholar
Klein, R. G. 1976 The Mammalian Fauna of the Klasies River Mouth Sites, Southern Cape Province, South Africa. South African Archaeological Bulletin 31 : 7598.CrossRefGoogle Scholar
Klein, R. G., and Cruz-Uribe, K. 1984 The Analysis of Animal Bones from Archaeological Sites. University of Chicago Press, Chicago.Google Scholar
Leakey, M. D. 1971 Olduvai Gorge, vol. 3. Cambridge University Press, Cambridge.Google Scholar
Lyman, R. L. 1984 Bone Density and Differential Survivorship of Fossil Classes. Journal of Anthropological Archaeology 3 : 259299.Google Scholar
Marean, C. W. 1991 Measuring the Postdepositional Destruction of Bone in Archaeological Assemblages. Journal of Archaeological Science 18, in press.Google Scholar
Marean, C. W., Blumenschine, R. J., and Capaldo, S. 1990 Bone Choice, Modification and Destruction by Captive Spotted Hyenas. Paper presented at the Sixth International Conference for Archaeozoology, Washington, D. C. Google Scholar
Marean, C. W., Spencer, L. M., Blumenschine, R. J., and Capaldo, S. 1991 Captive Hyena Bone Choice and Destruction, the Schlepp Effect, and Olduvai Archaeofaunas. Journal of Archaeological Science 18, in press.Google Scholar
Orloff, L. M., and Marean, C. W. 1990 Taphonomic Implications of Bone Choice and Destruction by Captive Spotted Hyenas. Paper presented at the Annual Meeting of the Society of Vertebrate Paleontology, Lawrence, Kansas.Google Scholar
Potts, R. 1988 Early Hominid Activities at Olduvai. Aldine de Gruyter, New York.Google Scholar
Richardson, P. R. K. 1980 Carnivore Damage on Antelope Bones and its Archaeological Implications. Paleontologia Africana 23 : 109125.Google Scholar
Skinner, J. D., Davis, S., and Hani, G. 1980 Bone Collecting by Striped Hyaenas, Hyaena hyaena, in Israel. Palaeontologia Africana 23 : 99104.Google Scholar
Straus, L. G. 1982 Carnivores and Cave Sites in Cantabrian Spain. Journal of Anthropological Research 38 : 7596.Google Scholar
Sutcliffe, A. J. 1970 Spotted Hyaena : Crusher, Gnawer, Digestor and Collector of Bones. Nature 227 : 11101113.CrossRefGoogle Scholar
Werdelin, L. 1989 Constraint and Adaptation in the Bone-Cracking Canid Osteoborus (Mammalia : Canidae). Paleobiology 15 : 387401.CrossRefGoogle Scholar