Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-28T02:34:08.327Z Has data issue: false hasContentIssue false

Numerical simulation of droplet impingement and film flow for three-dimensional wings

Published online by Cambridge University Press:  08 January 2024

Z. Xu*
College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, People’s Republic of China
X. Zeng
College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, People’s Republic of China
S. Yang
College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, People’s Republic of China
J. Yang
College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, People’s Republic of China
Corresponding author: Z. Xu; Email:


In order to investigate the three-dimensional effects on the flow characteristics of the thin water film for the three-dimensional wings, the numerical simulation of the droplet impingement and film flow on the MS-0317 wing is implemented based on the open-source package OpenFOAM. The simulation focuses on the effects of the angle-of-attack and the angle of sweepback. The movement and impingement of the droplets are calculated using the Lagrangian method, and the film flow is simulated using the thin film assumption and the finite area method. The simulation of the water film flow of the three-dimensional MS-0317 wing shows that there is a spanwise flow of the water film due to the three-dimensional effects. This suggests that more research should be conducted on the warm glaze ice with surface water film of three-dimensional ice accretion on three-dimensional geometries.

Research Article
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ruff, G.A., and Berkowitz, B.M., User manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE), NASA Contractor Report, 1990.Google Scholar
Gent, R.W., TRAJICE2—A combined water droplet and ice accretion prediction code for airfoils, Royal Aerospace Establishment, T R90054, 1990.Google Scholar
Hedde, T. and Guffond, D., Improvement of the ONERA 3D icing code, comparison with 3D experimental shapes, 31st Aerospace Sciences Meeting, 1993.CrossRefGoogle Scholar
Beaugendre, H., Morency, F. and Habashi, W.G., FENSAP-ICE’s three-dimensional in-flight ice accretion module: ICE3D, J. Aircraft, 2003, 40, (2), pp 239247. doi: 10.2514/2.3113 CrossRefGoogle Scholar
Andy, P.B. and Mark, G.P., Ice-accretion test results for three large-scale swept-wing models in the NASA Icing Research Tunnel, AIAA Paper 2016-3733, 2016.Google Scholar
Richard, E.K. and Andy, P.B., Collaborative experiments and computations in aircraft icing, AIAA Paper 2018-3324, 2018.Google Scholar
Yi, X., Gui, Y.W., and Zhu, G.L., Numerical Method of a Three-dimensional Ice Accretion Model of Aircraft, ACTA Aeronaut. Astronaut. Sin., 2010, 31, (11), pp 21522158.Google Scholar
Cao, G., Ji, H., and Si, R., Computational methodology of water film flow in three-dimensional ice accretion on upwind surface, J. Aerosp. Power, 2015, 30, (3), pp 677685. doi: 10.13224/j.cnki.jasp.2015.03.019 Google Scholar
Shen, X.B., Lin, G.P., Yu, J., Bu, X.Q., and Du, C.H., Three-dimensional numerical simulation of ice accretion at the engine inlet, J. Aircraft, 2013, 50, (2), pp 635642. doi: 10.2514/1.C031992a CrossRefGoogle Scholar
Huang, J.S., Nie, S. and Cao, Y.H., Multistep simulation for three-dimensional ice accretion on an aircraft wing, AIAA Paper 2016-1918, 2016.CrossRefGoogle Scholar
Cao, Y., Huang, J. and Yin, J., Numerical simulation of three-dimensional ice accretion on an aircraft wing. Int J Heat Mass Transf, 2016, 92, pp 3454.CrossRefGoogle Scholar
Liu, T., Qu, K., Cai, J.S. and Pan, S.C., A three-dimensional aircraft ice accretion model based on the numerical solution of the unsteady Stefan problem, Aerosp. Sci. Technol., 2019, 93, pp 113. doi: 10.1016/j.ast.2019.105328 CrossRefGoogle Scholar
Ahn, G.B., Jung, K.Y., Myong, R.S., Shin, H.B. and Habashi, W.G., Numerical and experimental investigation of ice accretion on rotorcraft engine air intake, J. Aircraft, 2015, 52, (3), pp 903909. doi: 10.2514/1.C032839 CrossRefGoogle Scholar
Raj, L.P., Esmaeilifar, E., Jeong, H. and Myong, R.S., Computational simulation of glaze ice accretion on a rotorcraft engine intake in large supercooled droplet icing conditions, AIAA Paper 2022-0447, 2022.Google Scholar
Myers, T.G., Extension to the Messinger model for aircraft icing, AIAA J., 2001, 39, (2), pp 211218.CrossRefGoogle Scholar
Sibo, L. and Roberto, P., Modeling of ice accretion over aircraft wings using a compressible OpenFOAM solver, Int. J. Aerosp. Eng., 2019, p 4864927. doi: 10.1155/2019/4864927 Google Scholar
Marco, K. and Dimitris, D., Collision dynamics of nanoscale Lennard-Jones clusters, Phys. Rev. B, 2006, 74, p 235415. doi: 10.1103/PhysRevB.74.235415 Google Scholar
Bai, C.X., Rusche, H., and Gosman, A.D., Modelling of gasoline spray impingement, Atomization and Sprays, 2002, 12, pp 127. doi: 10.1615/AtomizSpr.v12.i123.10 CrossRefGoogle Scholar
Mingione, G., Iuliano, E., Guffond, D. and Tropea, C., EXTICE: EXTreme icing environment, SAE Technical Paper, No. 2011-38-0063, 2011. doi: 10.4271/2011-38-0063 CrossRefGoogle Scholar
Alzaili, J. and Hammond, D., Experimental Investigation of thin water film stability and its characteristics in SLD icing problem, SAE Technical Paper, No. 2011-38-0064, 2011.Google Scholar
Leng, M.Y., Chang, S.N. and Lian, Y.S., Experimental study of water film dynamics under wind shear and gravity, AIAA J., 2018, 56, (5), pp 19. doi: 10.2514/1.J056440 CrossRefGoogle Scholar
Zhang, K. and Hu, H., An experimental study of the wind-driven water droplet/rivulet flows over an airfoil pertinent to wind turbine icing phenomena, 4th Joint US-European Fluids Engineering Summer Meeting, Chicago, IL, 2014.CrossRefGoogle Scholar
Guo, Y.S. and Lian, Y.S., Calculation of water collection efficiency using a multiphase flow solver, J. Aircraft, 2018, 56, (2), pp 685694. doi: 10.2514/1.C034793 CrossRefGoogle Scholar
Iuliano, E., Mingione, G., Petrosino, F. and Hervy, F., Eulerian modeling of large droplet physics toward realistic aircraft icing simulation, J. Aircraft, 2011, 48, (5), pp 16211632.CrossRefGoogle Scholar
Ellen, N., Jacco, M.H., Edwin, V.A.W., and Harry, W.M.H., Splashing model for impact of supercooled large droplets on a thin liquid film, AIAA Paper 2014-0738, 2014.Google Scholar
Tuković, Ž., Metoda kontrolnih volumena na domenama promjenjivog oblika, University of Zagreb, 2005.Google Scholar
Romenski, E., Drikakis, D., Toro, E, Conservative models and numerical methods for compressible two-phase flow, J. Sci. Comput., 2010, 42, pp 6895. doi: 10.1007/s10915-009-9316-y CrossRefGoogle Scholar
Beld, E.J., Droplet Impingement and Film Layer Modeling as a Basis for Aircraft Icing Simulations in OpenFOAM, Italy, CIRA, Dept. Mechanical Engineering MSc (60439), 2013.Google Scholar
OpenFOAM, Software Package, Ver. 7, The OpenFOAM Foundation Ltd, London, 2019.Google Scholar
Liu, N.Y., Zhao, X., Shao, J.Y. and Shu, C., Investigation of rain effects on NACA0012 airfoil with Open FOAM, The 13th OpenFOAM Workshop (OFW13), Shanghai, 2018.Google Scholar
Petr, V., Bernhard, F.W.G., Doris, P., and Helfried, S., Thin film flow simulation on a rotating disc, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, 2012.Google Scholar
Deng, Y.J., Zhang, L., Hou, H., Yu, B., and Sun, D.L., Modeling and simulation of the gas-liquid separation process in an axial flow cyclone based on the Eulerian-Lagrangian approach and surface film model, Powder Technol., 2019, 353, pp 473488. doi: 10.1016/j.powtec.2019.05.039 CrossRefGoogle Scholar
Meredith, K., Xin, Y., and Vries, J.D., A numerical model for simulation of thin-film water transport over solid fuel surfaces, Fire Saf. Sci., 2011, 10, pp 415428. doi: 10.3801/IAFFS.FSS.10-415 CrossRefGoogle Scholar
Papadakis, M., Hung, K.E. and Vu, G.T., Experimental investigation of water droplet impingement on airfoils, finite wings, and S-duct engine inlet, NASA/TM-2002-211700, Hanover, 2002.Google Scholar
Bidwell, C.S., and Mohler, S.R.J., Collection Efficiency and Ice Accretion Calculations for a Sphere, a Swept MS (1)-317 Wing, a Swept NACA-0012 Wing Tip, an Axisymmetric Inlet, and a Boeing 737-300 Inlet, AIAA Paper 1995-0755, 1995.CrossRefGoogle Scholar
Nusselt, W., Heat transfer in the trickle cooler, Zeitschrift des Vereines Deutscher Ingenieure, 1923, 67, pp 206210.Google Scholar