Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:20:07.804Z Has data issue: false hasContentIssue false

Lama I - A General Fortrah Program for Quantitative X-ray Fluorescence Analysis

Published online by Cambridge University Press:  06 March 2019

Daniel Laguitton
Affiliation:
IBM Research Laboratory San Jose, California 95193
Michael Mantler
Affiliation:
IBM Research Laboratory San Jose, California 95193
Get access

Abstract

A comprehensive Fortran IV program designed to perform the matrix correction in x-ray fluorescence analysis is described. Specimens and standards can be in bulk or film form. All necessary fundamental parameters are provided by internal routines thereby requiring a minimum of input data.

Type
X-Ray Fluorescence
Copyright
Copyright © International Centre for Diffraction Data 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sherman, J., “The Theoretical Derivation of X-ray Intensities from Mixtures,” Spectrochimica Acta, 7, 283 (1955).Google Scholar
2. Sherman, J., “Simplication Formula in the Correlation of Fluorescent X-Ray Intensities from Mixtures,” Spectrochimica Acta, 14, 466 (1959).Google Scholar
3. Shiraiwa, T. and Fujino, N., “Theoretical Calculation of Fluorescent X-ray Intensities in Fluorescent X-Ray Spectrochemical Analysis,” Japanese Journal of Applied Physics, 5, 10, 886 (1966).Google Scholar
4. Pollai, G., Mantler, M., and Ebel, H., “Die Sekundaranregung Bel der Rontgenfluoreszenzanalyse Ebener Dunner Schichten,” Spectrochimica Acta, 26B, 747 (1971).Google Scholar
5. Beaman, D. R. and Isasi, J. A., “A Critical Examination of Computer Programs Used in Quantitative Electron Microprobe Analysis,” Anal. Chem., 42, 13, 1540 (1970).Google Scholar
6. Laguitton, D., Bérubé, Y., and Claisse, F., “Un Nouveau Programme de Calcul en Language APL pour L'analyse Quantitative par Microsonde Electronique,” Can, J. Spectroscopy, 19, 3, 100 (1974).Google Scholar
7. Criss, J. W. and Birks, L. S., “Calculation Methods for Fluorescent X-Ray Spectrometry. Empirical Coefficients vs. Fundamental Parameters,” Anal. Chem., 40, 7, 1080 (1968).Google Scholar
8. Donald A., Stephenson, “Theoretical Analysis of Quantitative X-ray Emission Data: Glasses, Rocks, and Metals,” Anal. Chem., 43, 13, 1761 (1971).Google Scholar
9. C. J., Everett and Cashwell, E. D., “MCP Code Fluorescence Routine Revision,” Nuclear Science Abstracts, 29, 1, 230 (1974).Google Scholar
10. Heinrich, K. F. J., “Errors in Theoretical Correction Systems in Quantitative Electron Probe Microanalysis - A Synopsis,” Anal. Chem, 44, 350 (1972).Google Scholar
11. Gilfrich, J. V. and Birks, L. S., “Spectral Distribution of X-ray Tubes for Quantitative X-ray Fluorescence Analysis,” Anal, Chem., 40, 7, 1077 (1968).Google Scholar
12. W. H. McMaster, et al. Compilation of X-Ray Cross Sections, Document UCRL 5074, National Technical Information Service U.S. Dept, of Commerce, Springfield, Va. 22161, (1969).Google Scholar
13. Rasberry, S. D. and Heinrich, K. F. J., “Calibration for Interelement Effects in X-Ray Fluorescence Analysis,” Anal. Chem., 46, 81 (1974).Google Scholar