Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T01:47:11.507Z Has data issue: false hasContentIssue false

Chemical State Analysis by Soft X-ray Emission Spectra with Molecular-Orbital Calculations

Published online by Cambridge University Press:  06 March 2019

Jun Kawai*
Affiliation:
RIKEN (The Institute of Physical and Chemical Research) Wako, Saitama 351-01, Japan
Get access

Extract

This paper deals with soft X-ray spectra of compounds which have one or more spectator hole(s) in the valence orbitals. The aim is to give a simple picture of the complicated chemical effects and to describe implications of the chemical effects to know the chemical state from the complicated spectra of materials. The first example of the system which has a spectator hole in the valence orbital is the intensity modifications of the shake-off satellites (KM-→LM) in chlorine Kα spectra. The second example of the system which has spectator holes in the valence orbitals is the multiplet structure of Lα spectra of the transition-metal compounds. It is described that the chemical effects of these two systems are clearly interpreted by the avoided crossing [1] of the molecular orbitals, one of which has a localized hole. We also describe the systems which have no spectator holes. The interpretation of the X-ray spectra of these systems are easy by a molecular-orbital calculation at the ground state.

Type
III. Long-Wavelength X-Ray Spectrometry
Copyright
Copyright © International Centre for Diffraction Data 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Landau, L. D. and Lifschitz, E. M., “Kvantovaya Mekhanika”, (Gosudarstvennoe izdatel'stvo, Moscow, 1963), Chap.11, Sec.79.Google Scholar
2. Dodd, C. G. and Glen, G. L., Chemical bonding studies of silicates and oxides by X-ray K-emission spectroscopy, J. Appl. Phys., 12, 53775384 (1968).10.1063/1.1655986Google Scholar
3. Åberg, T., Theory of X-ray satellites, Phys. Rev., 156, 3541 (1967).10.1103/PhysRev.156.35Google Scholar
4. Gohshi, Y., Hukao, Y. and Hori, K., A wide-range, single-axis, vacuum two-crystal spectrometer for fluorescent X-ray analysis, Spectrochim. Acta, 27B, 135142 (1972).10.1016/0584-8547(72)80016-8Google Scholar
5. Kawai, J., Fujisawa, K., Gohshi, Y. and Satoko, C., Chemical effects of satellites on X-ray emission spectra-I. Observation of chemical effects in Cl Kα spectra, Spectrochim. Acta, 42B, 729743 (1987).10.1016/0584-8547(87)80137-4Google Scholar
6. Kawai, J., Satoko, C., Fujisawa, K. and Gohshi, Y., Many-electron effects in the shape of the Cl Kα1,2 X-ray emission lines, Phys. Rev. Lett., 57, 988991 (1986).10.1103/PhysRevLett.57.988Google Scholar
7. Kawai, J., Satoko, C. and Gohshi, Y., Chemical effects of satellites on X-ray emission spectra-II. A general theory of the origin of chemical effects and its application to Cl Kα spectra, Spectrochim. Acta, 42B, 745754 (1987).10.1016/0584-8547(87)80138-6Google Scholar
8. Kawai, J., Satoko, C. and Gohshi, Y., Chemical effects of satellites on X-ray emission spectra-III. A theory of the origin of chemical effects for small covalency limits and its application to Cl Kα spectra, Spectrochitn. Acta, 42B, 11251137 (1987).Google Scholar
9. Kawai, J., Satoko, C. and Gohshi, Y., Chemical effects on the hidden satellites of potassium Kα X-ray spectra, J. Phys. C: Solid State Phys., 20, 6981 (1987).Google Scholar
10. Kawai, J., Satoko, C., Gohshi, Y. and Nihei, Y., Experiment and theory of the chemical effects of satellites on Kα X-ray emission spectra, J. de Phys. (Paris), Colloq., C9, C9-745-748 (1987).Google Scholar
11. Endo, H., Uda, M. and Maeda, K., Influence of the chemical bond on the intensities of F Kα X-ray satellites produced by electron and photon impacts, Phys. Rev., A22, 14361440 (1980).Google Scholar
12. Valjakka, J., Utriainen, J., Åberg, T. and Tulkki, J., Direction-dependent initial-state relaxation in oxygen K X-ray emission, Phys. Rev., B32, 68926898 (1985).Google Scholar
13. Kawai, J., Nihei, Y., Bai, Y-Z., Fujisawa, K. and Gohshi, Y., Narrow line shape of CaF2 Ca Kα X-ray fluorescence spectrum due to avoided crossing, Phys. Rev., A39, 36863689 (1989).10.1103/PhysRevA.39.3686Google Scholar
14. Tsutsumi, K., The X-ray non-diagram lines Kβ’ of some compounds of the iron group, J. Phys. Soc. Jpn., 14, 16961706 (1959).10.1143/JPSJ.14.1696Google Scholar
15. Kawai, J., Oku, M. and Nihei, Y., X-ray photoelectron spectra of mixed valence transition metal compounds, Adv. X-Ray Chem. Anal. Japan, 21, 149167 (1990).Google Scholar
16. Larsson, S., Shake-up and multiplet structure of ESCA satellites of Cu compounds, Chem. Phys. Lett., 40, 362366 (1976).10.1016/0009-2614(76)85097-XGoogle Scholar
17. van der Laan, G., Westra, C., Haas, C. and Sawatzky, G. A., Satellite structure in photoelectron and Auger spectra of copper dihalides, Phys. Rev., B23, 43694380 (1981).10.1103/PhysRevB.23.4369Google Scholar
18. Kawai, J., Nihei, Y., Fujinami, M., Higashi, Y., Fukushima, S. and Gohshi, Y., Charge transfer effects on the chemical shift and the line width of the CuKα X-ray fluorescence spectra of copper oxides, Solid State Commun., 70, 567571 (1989).Google Scholar
19. Perera, R. C. C., Henke, B. L., Batson, P. J., Kerner, J. A., Berkeland, D. and Nordling, C., Cu-L X-ray emission spectra from high-Tc superconductors Y-Ba-Cu-O below and above the critical temperature, J. de Phys. (Paris), Colloq., C9, C9-11851188 (1987).Google Scholar
20. Saitoh, N., Higashi, Y., Minami, M., Fukushima, S., Gohshi, Y., Kohiki, S., and Wada, T., Resolution enhancement for Cu Kα emission of Y-Ba-Cu-O compounds, Adu. X-Ray Anal., 32, 155165 (1989).Google Scholar
21. Zaanen, J., Westra, C. and Sawatzky, G. A., Determination of the electronic structure of transition-metal compounds: 2p X-ray photoemission spectroscopy of the nickel dibalides, Phys. Rev., B33, 8060 (1986).10.1103/PhysRevB.33.8060Google Scholar
22. Liefeld, R. J., Soft X-ray emission spectra at threshold excitation, in “Soft X-ray band spectra and the electronic structure of metals and materials”, Ed. D. J. Fabian, (Academic, London, New York, 1968), pp.133149.Google Scholar
23. Holliday, J. E., Soft X-ray valence state effects in conductors, Adv. X-Ray Anal, 13,136157(1970).Google Scholar
24. Brown, J. G., “X-rays and their applications”, (Plenum, New York, 1966) pp. 148152.10.1007/978-1-4899-5687-3Google Scholar
25. Henke, B. L., Lee, P., Tanaka, T. J., Shimabukuro, R. L. and Fujikawa, B. K., Low-energy X-ray interaction coefficients: photoabsorption, scattering, and reflection, Atomic Data Nucl. Data Tables, 27, 1144 (1982).10.1016/0092-640X(82)90002-XGoogle Scholar
26. Zaanen, J., Sawatzky, G. A. and Allen, J. W., Band gaps and electronic structure of transition-metal compounds, Phys. Rev. Lett., 55, 418421 (1985).10.1103/PhysRevLett.55.418Google Scholar
27. Kawai, J., Nakamura, E., Nihei, Y., Fujisawa, K. and Gohshi, Y., Sc Kα and Kβ X-ray fluorescence spectra, Spectrochim. Acta, 45B, 463479 (1990).10.1016/0584-8547(90)80122-YGoogle Scholar
28. Okura, T. and Kanazawa, T., Molecular orbital calculation of TiKβ5 energy, J. Material Sci. Lett, 9, 790792 (1990).10.1007/BF00720160Google Scholar
29. Best, P. E., Electronic structure of the MnO4 - CrO4 2-, and VO4 3-” ions from the metal K X-ray spectra, J. Chem. Phys., 44, 32483253 (1966).10.1063/1.1727219Google Scholar
30. Mukoyama, T., Taniguchi, K. and Adachi, H., Chemical effect on Kβ:Kα X-ray intensity ratios, Phys. Rev., B34, 37103716 (1986).Google Scholar
31. Nasluzov, V. A., Kondratenko, A. V., Neyman, K. M. and Gutsev, G. L., An Xα DV study of the electronic structure, X-ray and X-ray photoelectron spectra of the 3d metal cyanide complexes, Chem. Phys. Lett, 146, 253258 (1988).10.1016/0009-2614(88)87440-2Google Scholar
32. Kawai, J., Maeda, K., Higashi, I., Takami, M., Hayasi, Y. and Uda, M., Site determination of oxygen in BU6O by oxygen Kα X-ray-emission spectroscopy, Phys. Rev., B42 (1990) in press.10.1103/PhysRevB.42.5693Google Scholar
33. Higashi, I., Kobayashi, M., Bernhard, J., Brodhag, C. and Thevenot, F., Abstracts of “10th Intern. Symp. on Boron, Borides and Related Compounds”, Albuquerque, 1990.Google Scholar
34. Maeda, K. and Uda, M., Application of anomalous oxygen Kα peak for the determination of metal oxide thickness, Spectrochim. Acta, 35B, 561567 (1980).10.1016/0584-8547(80)80031-0Google Scholar