Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T20:22:36.055Z Has data issue: false hasContentIssue false

Chemical Bonding and the Sulfur K X-Ray Spectrum

Published online by Cambridge University Press:  06 March 2019

D. W. Wilbur
Affiliation:
Lawrence Radiation Laboratory, University of California Livermore, California
J. W. Gofman
Affiliation:
Lawrence Radiation Laboratory, University of California Livermore, California
Get access

Abstract

An investigation has been made of the relative Kβ intensities in different chemical states of the sulfur atom using the Kα lines, with appropriate corrections, to provide the intensity standards. Both inorganic and organic compounds were included in the study. The data for each compound appear to be reliable to about ± 0.5%, while the whole series of compounds shows a variation greater than 20% in the corrected Kβ/Kα ratios. Energies were also measured, particularly the Kα energies, and their shifts were studied relative to the Kβ, intensity shifts. The work was done with a plane, single-crystal, helium-path spectrometer with proportional counter and pulse-height analysis for detection. The results are indicative of the usefulness of the method both in clarifying an uncertain chemical state and in studying the electronic structure of the bonded atom.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lindh, A. E. and Lundquist, O., “Die Struktur der Kβ1 -Linie des Schwefels,” Ark. Mat. Astr. Fysi. 18(14) : 311, 1924.Google Scholar
2. Faessler, A., “Roentgenspektrum und Bindungszustand,“m; Landolt-Bdrnstein Zàhlemeerte und Funktionen, Sixth edition; Vol. 1, Atom- una Molekularpkysik, Pt.4, Kristalle, 1955, pp. 769-868.Google Scholar
3. Faessler, A. and Goehring, M., “Roerttgenspektrurn und Bindungszuscand—Die Kα-Fluoreszenstrahlung des Schewfels,” Naturtaissenschaften 19: 169177, 1952.Google Scholar
4. Faessler, A., and Schmid, E. D., “Uber die Struktur des Roentgen-Ks-Spektrums von Schwefel,” Z. Physik 138: 7179, 1954.Google Scholar
5. Shuvaev, A. T., “Influence of the Chemical Bond on the Energy and Intensity of the X-Ray Lines of Atoms in Compounds,” Izv. Akad, Nauk SSSR Ser. Fiz, 25: 986991, 1961 (Columbia Technical Translations).Google Scholar
6. Schnell, E., “Zur Roentgenfluoreszenzanalyse,” 1. Mitt: “Die Intensitàtsverhaeltnisse der Jf-Linien dee Roentgenspektrums von Chlor in Abhangigkeit von der chemischen Bindung,” Monatsh. 93: 1383-1387, 1962; 3. Mitt.: “Die Aenderung der Relfttiven Intensitaeten der JCg- Strahlung der Elemente Schwefel, Phosphor, Silicium, und Aluminium bei Verbindungsbildung,” Monatsh. 94: 703713, 1963.Google Scholar
7. Blokhin, M. A., Shuvaev, A. T., and Gorskii, V. V., “X-Ray Study of the Chemical Bonds in Sulfur Compounds,” Izv. Akad. Nauk SSSR Ser. Fis. 28: 801804, 1964 (transi. J. A. S. Bradley).Google Scholar
8. Coulson, C. A. and Zauli, C., “The Kα Transitions in Compounds of Sulfur,” Mol. Phys. 6: 525533, 1963.Google Scholar
9. Bendazzoli, G. L., Falmieri, P., and Zauli, C., “X-Ray Transitions in Compounds of Sulfur: Frequency and Intensity Shift of Kα transitions,” Boil. Set. Fac. Chim. Ind. Bologna 22 (3-4): 97101, 1964.Google Scholar
10. Shuraev, A. T., “Determination of Ionic Charges in Compounds of the Third-Period Elements by Means of X-Ray Emission Spectra,” Isv. Akad. Nauk SSSR Ser. Fis. 28: 758764, 1964 (transi. J. A. S. Bradley).Google Scholar
11. Burlce, E. A. and Pettit, R. M., “Absorption Analysis of X-Ray Spectra Produced by Beryllium Window Tubes Operated at 20 to 50 Kvp,” Radiation Res. 13: 271285, 1960.Google Scholar
12. Sherman, J., “The Theoretical Derivation of Fluorescent X-Ray Intensities from Mixtures,” Spectrochem. Acta 7: 283306, 1955.Google Scholar
13. Renaud, M., “Le Calcul du Transfert de Rayonnement en Fluorescence X., L'effet de Matrice; L'équation de Transfert,” Compt. Rend. 256: 30863089, 1963.Google Scholar
14. Anonymous, “Table of X-Ray Mass Absorption Coefficients,” Norelco Rept. 9 (3) : 1962.Google Scholar
15. Bearden, J. A., “X-Ray Wavelengths,” U.S. At. Energy Comm. Rept. NYO-10S86, 1964.Google Scholar
16. Bearden, J. A., Henins, A., Marzolf, J. G., Sauder, W. C., and Thomsen, J. S., “Precision Redetermination of Standard Reference Wavelengths for X-Ray Spectroscopy,” Phys. Rev. 135A: 899910, 1964.Google Scholar
17. Valasek, J., “Effects of Chemical Combination on the X-Ray Emission Spectrum of Sulfur,” Phys. Rev. 43: 612-614, 1933 ; “X-Ray Emission Spectra of Sulfides and Sulfates,” Phvs. Rev. 51: 832834, 1937.Google Scholar
18. Kern, B., “Die Si Kα-Banden der Roentgenemissionsspektren von elementarem Silicium, Siliciumcarbid, und Siliciumdioxyd, “ Z. Physik 159: 178193, 1960.Google Scholar
19. Ivanov, A. V., “L23 X-Ray Emission Spectra of Sulfur in Sulfides,” Izv. Akad. Nauk SSSR Ser. Fiz. 26: 405408, 1962 (Columbia Technical Translations).Google Scholar