Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T04:06:10.076Z Has data issue: false hasContentIssue false

Characterization of Structural Inhomogeneities in GaAs/AIGaAs Superlattices

Published online by Cambridge University Press:  06 March 2019

P. C. Huang
Affiliation:
School of Materials Eng., Microelectronics Research Center, Georgia Institute of Technology, Atlanta, GA 30332
S. R. Stock
Affiliation:
School of Materials Eng., Microelectronics Research Center, Georgia Institute of Technology, Atlanta, GA 30332
A. Torabi
Affiliation:
Georgia Tech Research Inst.., Microelectronics Research Center, Georgia Institute of Technology, Atlanta, GA 30332
C. J. Summers
Affiliation:
Georgia Tech Research Inst.., Microelectronics Research Center, Georgia Institute of Technology, Atlanta, GA 30332
Get access

Abstract

Thin films containing periodic chemical or strain modulation (e.g. artificial superlattices or SL) are often characterized nondestructively by X-ray double-axis diffractometry. The satellite peaks from the modulated structure allow analysis of layer structure, elemental concentration and strain profile. This paper focuses on the effect of layer uniformity on the rocking curves of (001) GaAs/AlxGa1-xAsSL. Double-axis diffractometry for results from MBE samples with 800 Å SL periods and x=0.35 are compared for GaAs/AlGaAs layer thicknesses of 350/450, 400/400 and 450/350 Å. Symmetric (004) and asymmetric (315) diffraction planes are used to measure parallel and perpendicular misfit strains, layer periodicity and aluminum concentration. A modified kinematical scattering model, correcting for absorption and extinction, is used to calculate the satellite peak intensities and spacings. The relative thicknesses of GaAs and AlGaAs and the aluminum elemental concentration are optimized by matching with experimental results. The effect of nonuniform layer thickness on SL peak intensities is also investigated. The experimental results, the modified kinematical scattering calculations and dynamical theory agree closely for the 3-4 /zm thickness layers studied.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Esak, L., IEEE J Electronics, 22 : 1611 (1986).Google Scholar
2. Holonyak, N. Jr., Kolbas, R. M., Laidig, W. O. and Vojak, B. H., J Appl Phys, 51: 1378 (1930).Google Scholar
3. Tsang, W. T., Appl Phys Lett, 38: 204 (1981).Google Scholar
4. Speriosu, V. S. and Vreeland, T. Jr., J Appl Phys. 56: 1591 (1984).Google Scholar
5. Auvray, P., Baudet, M. and Regreny, A., J Appl Phys. 62: 456 (1987).Google Scholar
6. Vandenberg, J. M., Panish, M. B., Temkin, H. and Hamm, R. A., Appl Phys Lettr. 53: 1920 (1988).Google Scholar
7. Baribeau, J. M., Kechang, Song and Munro, K., Appl Phys Lettr. 54: 323 (1989).Google Scholar
8. Fewster, P. F., J Appl Cryst. 21: 524 (1988).Google Scholar
9. Macrander, A. T., Schwartz, G. P., and Gualtieri, G. J., J Appl Phys, 64: 6733 (1988).Google Scholar
10. Barnett, S. J., Brown, G. T., Houghton, D. C. and Baribeau, J. M., Appl Phys Lettr. 54: 1781 (1989).Google Scholar
11. Tanner, B. K., this volumeGoogle Scholar
12. Batterman, B. W. and Cole, H., Rev Mod Phys. 36: 681 (1964).Google Scholar
13. Bartels, W. J. and Nijman, W., J Cryst Growth. 44: 518 (1978).Google Scholar
14. Hornstra, J. and Bartels, W. J., J Cryst Growth, 44: 513 (1978).Google Scholar
15. Fewster, P. F. and Curling, C. J., J Appl Phys. 62: 4154 (1987).Google Scholar
16. Wie, C. W., J Appl Phys. 66: 985 (1989).Google Scholar
17. Ettenberg, M. and Paff, R. J., J Appl Phys. 41: 3926 (1970).Google Scholar
18. Estop, E., Izrael, A. and Sauvage, M., Acta Cryst. A32: 627 (1976).Google Scholar
19. Joncour, M. C., Charasse, M. N., and Burgeat, J., J Appl Phys. 56: 1591 (1984).Google Scholar
20. Huang, P. C. and Stock, S. R., simulation similar to wie, C. W., Tombrello, T. A. and Vreeland, T. Jr., J Appl Phys, 59: 3743 (1986).Google Scholar
21. Chrzan, D., J Appl Phys, 59: 1504 (1986).Google Scholar