Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T15:53:43.197Z Has data issue: false hasContentIssue false

Polymorphism in Syndiotactic Polystyrene

Published online by Cambridge University Press:  06 March 2019

B. G. Landes
Affiliation:
Polymeric Materials Research Center Dow Chemical Co., Midland, MI 48667
M.T. Malanga
Affiliation:
Polymeric Materials Research Center Dow Chemical Co., Midland, MI 48667 Designed Thermoplastics Research Dow Chemical Co., Midland., MI 48667
B.P. Thill
Affiliation:
Polymeric Materials Research Center Dow Chemical Co., Midland, MI 48667 Designed Thermoplastics Research Dow Chemical Co., Midland., MI 48667
Get access

Extract

Polystyrene has been commercially manufactured for over fifty years. Today it enjoys widespread application in appliances, food containers, packaging, toys and thermal insulation. Generally, the term polystyrene is used as a generic descriptor for “he atactic configuration of the polymer chain. In this context the term configuration refers to structural regularity with respect to the substituted carbon atom within the polymer chain. In atactic polystyrene (PS) the phenyl groups are distributed randomly along either side of the polymer backbone. (Figure 1). Since there is no significant degree of long range order along this chain the polymer will not crystallize to any appreciable level.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishihara, N., Seiitiiya, T., Kuramoto, M. and Uoi, M., Macromolecules, 19: 2464 (1986).Google Scholar
2. Eur. Parent Appl. 210615(1987), invs.:Ishihara, N., Seimiya, T., Kuramoco, M., M. Uoi, Chem. Abstr., 106, 177084p (1987).Google Scholar
3. Grassi, A., Pellecchia, C., Longo, P. and Zambelli, A., Gazz. Chim. Ital., 19: 2465 (1987).Google Scholar
4. Pellecchia, C., Longo, P., Grassi, A., Arnmendola, P. and Zambelli, A., Makromol. Chem., Rapid Commun., 8: 277 (1987).Google Scholar
5. Chatani, Y., Fujii, Y., Shiinane, Y. and Ijitsu, T., Polym, Prepr., Japan, 37:26-0-12 (1988).Google Scholar
6. Kobayashi, M., Nakaoki, T. and Uoi, M., Polym. Prepr., Japan, 37:26-0-20 (1988).Google Scholar
7. Nyquist, R., Appl. Spectroscopy, 43: 440 (1989).Google Scholar
8. Vittoria, V., Makromol. Chem., Rapid Commun., 9: 765 (1988).Google Scholar
9. Immirzi, A., de Candia, F., Iannelli, P. and Zambelli, A., Makromol. Chem. Rapid Commun., 9: 761 (1988).Google Scholar
10. Sundararajan, P. and Tyrer, N., Macromolecules, 15: 1004 (1982).Google Scholar
11. Tyrer, H., Bluhm, T. and Sundararajan, P., Macromolecules, 17: 2296 (1984).Google Scholar
12. Edmonds, J. and Brown, A., Adv. in X-ray Anal., 23: 361 (1980).Google Scholar
13. Fawcett, T. et al., U.S. Patent, Patent Number 4,821,303.(1989).Google Scholar
14. Luuer, D. and Louer, M., J. Appl. Cryst., 5: 271 (1972).Google Scholar
15. Wermer, P., Z. Krist., 120: 375 (1963).Google Scholar
16. Appleman, D., Evans, H. and Handwerker, D., U.S. Geological Survey, USGS-GD-73-003 (1973).Google Scholar
17. Pasztor, A., Landes, B. and Karjala, P., Thermo. Acta, submitted for publication (1989).Google Scholar
18. Doherty, D. and Hopfinger, A., Macromolecules, 22: 2472 (1988).Google Scholar
19. Tosaka, M., Tsuji, M., Kawaguchi, A. and Katayama, K., Polym. Prepr., Japan, 37:26-0-16 (1988).Google Scholar