Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T23:38:44.888Z Has data issue: false hasContentIssue false

Extending Experimental Control

The Use of Porcelain in Flaked Stone Experimentation

Published online by Cambridge University Press:  16 January 2017

Nada N. Khreisheh
Affiliation:
Department of Archaeology, The University of Exeter, Laver Building, North Park Road, Exeter, Devon, EX4 4QE, United Kingdom (N.N.Khreisheh@ex.ac.uk)
Danielle Davies
Affiliation:
Department of Archaeology, The University of Exeter, Laver Building, North Park Road, Exeter, Devon, EX4 4QE, United Kingdom (dd232@ ex.ac.uk)
Bruce A. Bradley
Affiliation:
Department of Archaeology, The University of Exeter, Laver Building, North Park Road, Exeter, Devon, EX4 4QE, United Kingdom (B.A.Bradley@ex.ac.uk)

Abstract

One of the biggest problems faced by archaeologists engaged in flaked stone experiments is that of control. Controls are universally accepted as a way of ensuring reliability of experimental results used to interpret the archaeological record. Here, the use of a new and tightly controllable material in flaked stone experiments is proposed: porcelain. Unlike traditional approaches using stone, porcelain—while demonstrating comparable properties and fracture mechanics—can be more tightly controlled. As such, we suggest that its use ensures greater reliability in results derived from studies of tool manufacture and use and more potential for repeatability of experimental studies. A critique of previous approaches is followed by an assessment of porcelain as a suitable material for experimentation, in which two case studies that piloted the material are discussed. The first demonstrates its use in experiments regarding tool manufacture and skill. The second demonstrates its success in experiments dealing with observations of use-wear, such as projectile point impact fractures. The varied nature of these two studies aptly demonstrates the benefits of using porcelain as a controllable, moldable material.

Uno de los problemas más grandes a los que se enfrentan los arqueólogos que se dedican a la talla lítica experimental es el del control. El control es aceptado universalmente como una forma de asegurar la confiabilidad de los resultados utilizados para interpretar el registro arqueológico. Aquí, se propone el uso de un material nuevo y altamente controlable: la porcelana. A diferencia de los estudios tradicionales que utilizan lítica, la porcelana, al demostrar propiedades y mecánica de fractura comparables, puede controlarse más estrictamente. Por lo tanto, sugerimos que su uso asegura una mayor confiabilidad a los resultados derivados de los estudios de producción y uso de herramientas y un potencial mayor para la repetibilidad de los estudios experimentales. A la crítica de propuestas previas, le sigue una evaluación de la porcelana como material apropiado para la experimentación en la que se discuten dos estudios de caso que ponen a prueba el material. El primero demuestra su uso en experimentos relacionados con la manufactura de las herramientas y la habilidad. El segundo demuestro su éxito en experimentos relacionados con las observaciones de huellas de uso, tales como, las fracturas de impacto en puntas de proyectil. La naturaleza variada de estos dos estudios demuestra acertadamente los beneficios del uso de la porcelana como un material controlable y maleable.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Barton, R. N. E. and Bergman, Christopher A. 1982 Hunters at Hengistbury: Some Evidence from Experimental Archaeology. World Archaeology 14:237248.Google Scholar
Bengisu, Murat (editor) 2001 Engineering Ceramics. Springer-Verlang, Berlin.CrossRefGoogle Scholar
Bergman, Christopher A. and Newcomer, Mark H. 1983 Flint Arrowhead Breakage: Examples from Ksar Akil, Lebanon. Journal of Field Archaeology 10:238243.Google Scholar
Carty, William M., and Senapati, Udayan 1998 Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. Journal of the American Ceramic Society 81:320.Google Scholar
Coles, John 1973 Archaeology by Experiment. Hutchinson, London.Google Scholar
Cotterell, Brian 2010 Fracture and Life. Imperial College Press, London.Google Scholar
CTM Potters Supplies 2013 Porcelain Composition Information. Electronic Document, http://www.ctmpotterssupplies.co.uk/New_Folder/technical1-WEB.pdf, accessed May 1 2013.Google Scholar
Dibble, Harold L., and Pelcin, Andrew 1995 The Effect of Hammer Mass and Velocity on Flake Mass. Journal of Archaeological Science 22:429439.Google Scholar
Dibble, Harold L., and Rezek, Zeljko 2009 Introducing a New Experimental Design for Controlled Studies of Flake Formation: Results for Exterior Platform Angle, Platform Depth, Angle of Blow, Velocity and Force. Journal of Archaeological Science 36:19451954.Google Scholar
Dockall, John E. 1997 Wear Traces and Projectile Impact: A Review of the Experimental and Archaeological Evidence. Journal of Field Archaeology 24:321331.Google Scholar
Eren, Metin I. 2008 Experimental Lithic Technology with Special Reference to Levallois Skill. Unpublished Master's thesis, Department of Archaeology, University of Exeter.Google Scholar
Eren, Metin I., Bradley, Bruce A., and Garth Sampson, C. 2011 Middle Paleolithic Skill Level and the Individual Knapper: An Experiment. American Antiquity 76:229251.Google Scholar
Faulkner, Alaric 1973 The Mechanics of Eraillure Formation. Newsletter of Lithic Technology 2(3): 412.Google Scholar
Ferguson, Jeffrey 2008 The When, Where, and How of Novices in Craft Production. Journal of Archaeological Method and Theory 15:5167.Google Scholar
Finlay, Nyree 2008 Blank Concerns: Issues of Skill and Consistency in the Replication of Scottish Later Mesolithic Blades. Journal of Archaeological Method and Theory 15:6890.CrossRefGoogle Scholar
Fischer, Anders, Hansen, Peter, and Rasmussen, Peter 1984 Macro and Micro Wear Traces on Lithic Projectile points. Journal of Danish Archaeology 3:1946.Google Scholar
Frison, George C., Wilson, Michael, and Wilson, Diane J. 1976 Fossil Bison and Artifacts from an Early Altithermal Period Arroyo Trap in Wyoming. American Antiquity 41:2857.Google Scholar
Geribàs, Núria, Mosquera, Marina, and Verges, Josep M. 2010 What Novice Knappers Have to Learn to Become Expert Stone Toolmakers. Journal of Archaeological Science 37:28572870.CrossRefGoogle Scholar
Iovita, Radu, Schönekeß, Holger, Gaudzinski-Windheuser, Sabine, and Jäger, Frank 2013 Projectile Impact Fractures and Launching Mechanisms: Results of a Controlled Ballistic Experiment Using Replica Levallois Points. Journal of Archaeological Science, in press.Google Scholar
Klemenic, Steffan 2012 An Experimental Investigation into the Clovis Snapped Blade Technology. Unpublished Bachelor's thesis, Department of Archaeology, University of Exeter.Google Scholar
Odell, George H. 2003 Lithic Analysis. Springer, New York.Google Scholar
Odell, George H. and Cowan, Frank 1986 Experiments with Spears and Arrows on Animal Targets. Journal of Field Archaeology 13:194212.Google Scholar
O’Leary, Sam 2012 Can We Identify Adzes in the Archaeological Record? An Experimental Study Based on Material from the Gault Site, Texas. Unpublished Bachelor's thesis, Department of Archaeology, University of Exeter.Google Scholar
Polehampton, Edward. T. W. 1815 The Gallery of Nature and Art; Or, a Tour through Creation and Science, Vol. VI. R. Wilks, London.Google Scholar
Ramsay, William R. H., and Elizabeth, G. Ramsay 2008 A Case for the Production of the Earliest Commercial Hard-Paste Porcelains in the English-Speaking World by Edward Heylyn and Thomas Fry in about 1743. Proceedings of the Royal Society of Victoria 120(1):236256.Google Scholar
Rezek, Zeljko, Lin, Sam, Iovita, Radu, and Dibble, Harold L. 2011 The Relative Effects of Core Surface Morphology on Flake Shape and Other Attributes. Journal of Archaeological Science 38:13461359.Google Scholar
Savage, George 1963 Porcelain through the Ages. Penguin Books Ltd, Harmondsworth, UK.Google Scholar
Shelley, Phillip H. 1990 Variation in Lithic Assemblages: An Experiment. Journal of Field Archaeology 17:187193.Google Scholar
Speth, John. D. 1975 Miscellaneous Studies in Hard Hammer Percussion Flaking: The Effects of Oblique Impact. American Antiquity 40:203207.Google Scholar
Whittaker, John. C. 1994 Flintknapping: Making and Understanding Stone Tools. University of Texas Press, Austin.Google Scholar
Winton, Vicky 2005 An Investigation of Knapping-Skill Development in the Manufacture of Palaeolithic Handaxes. In Stone Knapping: The Necessary Conditions for a Uniquely Hominin Behaviour, edited by Roux, Valentine and Bril, Blandine, pp. 109116. McDonald Institute for Archaeological Research, Cambridge.Google Scholar