Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:46:00.939Z Has data issue: false hasContentIssue false

The Application of 3D Photogrammetry for In-Field Documentation of Archaeological Features

Published online by Cambridge University Press:  16 January 2017

Matthew Douglass
Affiliation:
Department of Anthropology, University of Nebraska-Lincoln, 816 Oldfather Hall, Lincoln, NE 68588-0368
Sam Lin
Affiliation:
Department of Anthropology, University of Pennsylvania, 3260 South Street, Philadelphia, PA 19104-6398
Michael Chodoronek
Affiliation:
Department of Anthropology, University of Nebraska-Lincoln, 816 Oldfather Hall, Lincoln, NE 68588-0368

Abstract

The logistics of time-efficient yet accurate documentation of archaeological features are a challenge within the context of pedestrian survey. Here we present results of two case studies documenting the use of photogrammetry under field conditions within the Great Plains. Results demonstrate the ease with which high quality models can be obtained with minimal training and by using standard field cameras and computers. Different models of pit hearth and architectural features are presented to demonstrate the versatility of model output formats in terms of their accessibility to broad audiences and the variety of display options available. Comparison with more traditional field measurements indicates the suitability and superiority of this approach in terms of time investment and mapping detail and accuracy. Combined, these efforts demonstrate the potential of this technique to be incorporated into the standard practices of academic and professional field projects with minimal interruption.

La logística para documentar elementos arqueológicos de manera eficiente y precisa constituye un reto dentro de los recorridos de superficie peatonales. Aquí, presentamos los resultados de dos estudios de caso, para los cuales se utiliza la fotogrametría como parte del trabajo de campo realizado en las Grandes Llanuras de los Estados Unidos. Los resultados demuestran la facilidad con la que se pueden obtener modelos de alta calidad en el campo, con un entrenamiento mínimo y con el uso de cámaras y computadoras. Se incluyen diferentes modelos de fogones y elementos arquitectónicos para demostrar la facilidad con la que se les puede presentar bajo distintos formatos, tanto en términos de su accesibilidad a una amplia audiencia, así como las distintas opciones existentes para su presentación. En comparación con otras mediciones tradicionales de campo, este acercamiento resulta ser mucho más apto y excelente en términos del tiempo que se invierte y en el mapeo detallado y preciso. En combinación, estos esfuerzos demuestran el potencial que tiene esta técnica para ser incorporada en las prácticas estándares de proyectos académicos y profesionales, con una mínima interrupción durante el trabajo de campo.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

AgiSoft LLC 2014a Agisoft PhotoScan User Manual—Standard Edition. Electronic document, http://www.agisoft.ru/pdf/photoscan_1_0_en.pdf, accessed September 1, 2014.Google Scholar
AgiSoft LLC 2014b Agisoft PhotoScan User ManualProfessional Edition. Electronic document, http://www.agisoft.ru/pdf/photoscan_pro_1_0_en.pdf, accessed September 1, 2014.Google Scholar
Balzani, Marcello, Santopuoli, Nicola, Grieco, Alessandro, and Zaltron, Nicola 2004 Laser Scanner 3D Survey in Archaeological Field: The Forum of Pompeii. International Conference on Remote Sensing Archaeology pp. 169175. Beijing.Google Scholar
Banning, E.B. 2002 Archaeological Survey. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Brutto, M. Lo, and Meli, Paola 2012 Computer Vision Tools for 3D Modelling in Archaeology. International Journal of Heritage in the Digital Era 1:16.Google Scholar
Chase, Arlen, Chase, Diane, Awe, Jaime, Weishampel, John,Iannone, Gyles, Holley, Moyes, Jason, Yaeger, and Brown, Kathryn M. 2014 The Use of LiDAR in Understanding the Ancient Maya Landscape. Advances in Archaeological Practice 2:208221.Google Scholar
Crow, P., Benham, S., Devereux, B. J., and Amable, G. S. 2007 Woodland Vegetation and Its Implications for Archaeological Survey Using LiDAR. Forestry 80:241252.CrossRefGoogle Scholar
De Reu, Jeroen, De Smedt, Philippe, Herremans, Davy, Van Meirvenne, Marc, Laloo, Pieter, and De Clercq, Wim 2014 On introducing an Image-Based 3D Reconstruction Method in Archaeological Excavation Practice. Journal of Archaeological Science 41:251262.Google Scholar
De Reu, Jeroen, Plets, Gertjan, Verhoeven, Geert, De Smedt, Philippe, Bats, Machteld, Cherretté, Bart, and De Maeyer, Wouter 2013 Towards a Three-Dimensional Cost-Effective Registration of the Archaeological Heritage. Journal of Archaeological Science 40:11081121.Google Scholar
Doneus, Michael, Verhoeven, Geert, Fera, Martin, Briese, Christian, Kucera, Matthias, and Neubauer , Wolfgang 2011 From Deposit to Point Cloud: A Study of Low-cost Computer Vision Approaches for the Straightforward Documentation of Archaeological Excavations. Geoinformatics 6:8188.Google Scholar
Doneus, Michael, Briese, Christian, Fera, Martin, and Janner , Martin 2008 Archaeological Prospection of Forested Areas Using Full-Waveform Airborne Laser Scanning. Journal of Archaeological Science 35:882893.CrossRefGoogle Scholar
Douglass, Matthew, Nycz, Chris, and Brunette, Jeremy 2015 Archaeological Inventory, Testing, and Data Development in the Chickasaw National Recreation Area, Murray County, Oklahoma. Department of Anthropology, University of Nebraska-Lincoln. Submitted to the National Park Service. Copies available from the Department of Anthropology, University of Nebraska-Lincoln.Google Scholar
Ducke, Benjamin, Score, David, and Reeves, Joseph 2011 Multiview 3D Reconstruction of the Archaeological Site at Weymouth from Image Series. Computers & Graphics 35:375382.CrossRefGoogle Scholar
Dunnell, Robert C., and Dancey , William S. 1983 The Siteless Survey: A Regional Scale Data Collection Strategy. Advances in Archaeological Method and Theory 6:267287.Google Scholar
Fonstad, Mark A., Dietrich, James T., Courville, Brittany C., Jensen, Jennifer L., and Carbonneau, Patrice E. 2013 Topographic Structure from Motion: A New Development in Photogrammetric Measurement. Earth Surface Processes and Landforms 38:421430.Google Scholar
Ghosh, Sanjib K. 1988 Analytical Photogrammetry, 2nd ed. Pergamon Press, Oxford.Google Scholar
Barsanti, Gonizzi, Sara, Fabio Remondino, and Visintini, Domenico 2012 Photogrammetry and Laser Scanning for Archaeological Site 3D Modeling: Some Critical Issues. Proceedings of the 2nd Workshop on “The New Technologies for Aquileia,” edited by Roberto, V., Fozzati, L. B1-B10. Aquileia, Italy.Google Scholar
Guidi, Gabriele, Remondino, Fabio, Russo, Michele, Menna, Fabio, Rizzi, Alessandro, and Ercoli , Sebastiano 2009 A Multi-Resolution Methodology for the 3D Modeling of Large and Complex Archeological Areas. International Journal of Architectural Computing 7:3955.Google Scholar
Heizer, Robert Fleming, Graham, John Allen, and Ragir, Sonia 1967 A Guide to Field Methods in Archaeology: Approaches to the Anthropology of the Dead. National Press, Palo Alto, California.Google Scholar
Herrmann, Jason, King, Jason, and Buikstra, Jane 2014 Mapping the Internal Structure of Hopewell Tumuli in the Lower Illinois River Valley through Archaeological Geophysics. Advances in Archaeological Practice 2:164179.Google Scholar
Hohmann, Heidi, and Grala , Katarzyna 2004 Cultural landscape report, Platt Historic District, Chickasaw National Recreation Area, Oklahoma. Iowa State University and National Park Service. Copies available from the Chichasaw National Recreation Area, Sulphur, Oklahoma.Google Scholar
Kersten, Thomas P., and Lindstaedt , Maren 2012 Image-Based Low-Cost Systems for Automatic 3D Recording and Modelling of Archaeological Finds and Objects. Progress in Cultural Heritage Preservation 7616:110.Google Scholar
Kim, Jinsoo, Lee, Seongkyu, Ahn, Hoyong, Seo, Dongju, Park, Soyoung, and Choi, Chuluong 2013 Feasibility of Employing a Smartphone as the Payload in a Photogrammetric UAV System. ISPRS Journal of Photogrammetry and Remote Sensing 79:118.CrossRefGoogle Scholar
King, Thomas F. 1978 The Archaeological Survey: Methods and Uses. United States Department of the Interior, Heritage Conservation and Recreation Service, Washington, D.C. Google Scholar
Lerma, José Luis, Navarro, Santiago, Cabrelles, Miriam, and Villaverde , Valentín 2010 Terrestrial Laser Scanning and Close Range Photogrammetry for 3D Archaeological Documentation: The Upper Palaeolithic Cave of Parpalló as a Case Study. Journal of Archaeological Science 37:499507.Google Scholar
Linder, Wilfried 2006 Digital Photogrammetry: A Practical Course. Springer, New York.Google Scholar
McCarthy, John 2014 Multi-image Photogrammetry as a Practical Tool for Cultural Heritage Survey and Community Engagement. Journal of Archaeological Science 43:175185.Google Scholar
Remondino, Fabio 2011 Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sensing 3:11041138.Google Scholar
Schenk, Toni 2005 Introduction to Photogrammetry. Department of Civil and Environmental Engineering and Geodetic Science, Ohio State University, Columbus. Electronic document, http://www.mat.uc.pt/~gil/downloads/IntroPhoto.pdf, accessed February 5, 2015.Google Scholar
Schiffer, Michael B., Sullivan, Alan P., and Klinger, Timothy C. 1978 The Design of Archaeological Survey. World Archaeology 10:128.Google Scholar
Sketchfab, 2014 About Sketchfab. Electronic document, https://sketchfab.com/about, accessed April 8 2015.Google Scholar
Snavely, Noah 2008 Scene Reconstruction and Visualization from Internet Photo Collections. Ph.D. dissertation, Department of Computer Science and Engineering, University of Washington, Seattle.Google Scholar
Snavely, Noah, Seitz, Steven M., and Szeliski, Richard 2008 Modeling the World from Internet Photo Collections. International Journal of Computer Vision 80:189210.Google Scholar
Ullman, Shimon 1979 The Interpretation of Structure from Motion. Proceedings of the Royal Society B 203:405426.Google Scholar
Wandsnider, LuAnn 1997 The Roasted and the Boiled: Food Composition and Heat Treatment with Special Emphasis on Pit-Hearth Cooking. Journal of Anthropological Archaeology 16:148.CrossRefGoogle Scholar
Wandsnider, LuAnn 1999 Late Prehistoric High Plains. Foragers: Starving Nomads, Affluent Foragers. Great Plains Research 9:939.Google Scholar
Wandsnider, Luann, Athen, Heidi, Galindo, Jennifer, and MacDonell, George 1995 University of Nebraska-Lincoln Summer Field School in Archaeology, 1994 Report to the Nebraska National Forest. Copies available from U.S. Department of Agriculture Forest Service Nebraska National Forest, Chadron, Nebraska 69337Google Scholar
Wandsnider, LuAnn, Mackling, Elisha A., and Douglass, Matthew J. 2008 Cultural Resources Inventory for the Ash Creek and Roundtop Hazardous Fuels Reduction Project Areas of the Nebraska National Forest, Dawes and Sioux County, Nebraska. Report submitted to U.S. Department of Agriculture Forest Service Nebraska National Forest Chadron, Nebraska 69337. Copies available from the Forest Supervisor’s Office, Nebraska National Forest, Chardron, Nebraska.Google Scholar
Westoby, M.J., Brasington, J.,Glasser, N.F.,Hambrey, M.J., and Reynolds, J.M. 2012 “Structure-from-Motion” Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 179:300314.Google Scholar
Yilmaz, , Murat, Haci, Yakar, Murat, Gulec, Saadet Armagan, andDulgerler, Nuri Osman 2007 Importance of Digital Close-Range Photogrammetry in Documentation of Cultural Heritage. Journal of Cultural Heritage 8:428433.Google Scholar