Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T16:17:33.899Z Has data issue: false hasContentIssue false

Series expansions for the all-time maximum of α-stable random walks

Published online by Cambridge University Press:  19 September 2016

Clifford Hurvich*
Affiliation:
Leonard N. Stern School of Business New York University
Josh Reed*
Affiliation:
Leonard N. Stern School of Business New York University
*
* Postal address: Leonard N. Stern School of Business, New York University, 44 West 4th St., New York, NY 10012, USA.
* Postal address: Leonard N. Stern School of Business, New York University, 44 West 4th St., New York, NY 10012, USA.

Abstract

We study random walks whose increments are α-stable distributions with shape parameter 1<α<2. Specifically, assuming a mean increment size which is negative, we provide series expansions in terms of the mean increment size for the probability that the all-time maximum of an α-stable random walk is equal to 0 and, in the totally skewed-to-the-left case of skewness parameter β=-1, for the expected value of the all-time maximum of an α-stable random walk. Our series expansions generalize previous results for Gaussian random walks. Key ingredients in our proofs are Spitzer's identity for random walks, the stability property of α-stable random variables, and Zolotarev's integral representation for the cumulative distribution function of an α-stable random variable. We also discuss an application of our results to a problem arising in queueing theory.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramowitz, M. and Stegun, I. A. (1964).Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.U.S. Government Printing Office,Washington, D.C.Google Scholar
[2] Asmussen, S. (2003).Applied Probability and Queues,2nd edn.Springer,New York.Google Scholar
[3] Billingsley, P. (1999).Convergence of Probability Measures,2nd edn.John Wiley,New York.CrossRefGoogle Scholar
[4] Billingsley, P. (2012).Probability and Measure.John Wiley,Hoboken, NJ.Google Scholar
[5] Blanchet, J. and Glynn, P. (2006).Complete corrected diffusion approximations for the maximum of a random walk.Ann. Appl. Prob. 16,951983.CrossRefGoogle Scholar
[6] Broadie, M.,Glasserman, P. and Kou, S. (1997).A continuity correction for discrete barrier options.Math. Finance 7,325349.CrossRefGoogle Scholar
[7] Broadie, M.,Glasserman, P. and Kou, S. G. (1999).Connecting discrete and continuous path-dependent options.Finance Stoch. 3,5582.CrossRefGoogle Scholar
[8] Chang, J. T. and Peres, Y. (1997).Ladder heights, Gaussian random walks and the Riemann zeta function.Ann. Prob. 25,787802.CrossRefGoogle Scholar
[9] Chung, K. L. (2001).A Course in Probability Theory,3rd edn.Academic Press,San Diego, CA.Google Scholar
[10] Cohen, J. W. and Boxma, O. J. (1983).Boundary Value Problems in Queueing System Analysis.North-Holland,Amsterdam.Google Scholar
[11] Feller, W. (1971).An Introduction to Probability Theory and Its Applications, Vol. II,2nd edn.John Wiley,New York.Google Scholar
[12] Glasserman, P. and Liu, T.-W. (1997).Corrected diffusion approximations for a multistage production-inventory system.Math. Operat. Res. 22,186201.CrossRefGoogle Scholar
[13] Gorenflo, R.,Kilbas, A. A.,Mainardi, F. and Rogosin, S. V. (2014).Mittag‒Leffler Functions, Related Topics and Applications.Springer,Heidelberg.CrossRefGoogle Scholar
[14] Janssen, A. J. E. M. (2014). Personal communcation.Google Scholar
[15] Janssen, A. J. E. M. and van Leeuwaarden, J. S. H. (2007).Cumulants of the maximum of the Gaussian random walk.Stoch. Process. Appl. 117,19281959.CrossRefGoogle Scholar
[16] Janssen, A. J. E. M. and van Leeuwaarden, J. S. H. (2007).On Lerch's transcendent and the Gaussian random walk.Ann. Appl. Prob. 17,421439.CrossRefGoogle Scholar
[17] Janssen, A. J. E. M.,van Leeuwaarden, J. S. H. and Zwart, B. (2008).Corrected asymptotics for a multi-server queue in the Halfin‒Whitt regime.Queueing Systems 58,261301.CrossRefGoogle Scholar
[18] Janssen, A. J. E. M.,van Leeuwaarden, J. S. H. and Zwart, B. (2011).Refining square-root safety staffing by expanding Erlang C.Operat. Res. 59,15121522.CrossRefGoogle Scholar
[19] Jelenković, P.,Mandelbaum, A. and Momčilović, P. (2004).Heavy traffic limits for queues with many deterministic servers.Queueing Systems 47,5369.CrossRefGoogle Scholar
[20] Kiefer, J. and Wolfowitz, J. (1955).On the theory of queues with many servers.Trans. Amer. Math. Soc. 78,118.CrossRefGoogle Scholar
[21] Kiefer, J. and Wolfowitz, J. (1956).On the characteristics of the general queueing process, with applications to random walk.Ann. Math. Stat. 27,147161.CrossRefGoogle Scholar
[22] Kingman, J. F. C. (1965).The heavy traffic approximation in the theory of queues. In Proceedings of the Symposium on Congestion Theory,University of North Carolina Press,Chapel Hill, NC, pp. 137169.Google Scholar
[23] Lang, S. (1999).Complex Analysis,4th edn.Springer,New York.CrossRefGoogle Scholar
[24] Lieb, E. H. and Loss, M. (2001).Analysis,2nd edn.American Mathematical Society,Providence, RI.Google Scholar
[25] Nolan, J. P. (1997).Numerical calculation of stable densities and distribution functions.Commun. Statist. Stoch. Models 13,759774.CrossRefGoogle Scholar
[26] Owen, W. L. (1973).An estimate for E(|S n |) for variables in the domain of normal attraction of a stable law of index α, 1<α<2.Ann. Prob. 1,10711073.CrossRefGoogle Scholar
[27] Riemann, B. (1859).Ueber die anzahl der primzahlen unter einer gegebenen grösse.Ges. Math. Werke Wissenschaftlicher Nachlaß 2,145155.Google Scholar
[28] Samorodnitsky, G. and Taqqu, M. S. (1994).Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance.Chapman & Hall,New York.Google Scholar
[29] Siegmund, D. (1979).Corrected diffusion approximations in certain random walk problems.Adv. Appl. Prob. 11,701719.CrossRefGoogle Scholar
[30] Siegmund, D. (1985).Sequential Analysis: Tests and Confidence Intervals.Springer,New York.CrossRefGoogle Scholar
[31] Spitzer, F. (1956).A combinatorial lemma and its application to probability theory.Trans. Amer. Math. Soc. 82,323339.CrossRefGoogle Scholar
[32] Whitt, W. (2002).Stochastic-Process Limits.Springer,New York.CrossRefGoogle Scholar
[33] Wolff, R. W. (1989).Stochastic Modeling and the Theory of Queues.Prentice Hall,Englewood Cliffs, NJ.Google Scholar
[34] Zhang, B.,van Leeuwaarden, J. S. H. and Zwart, B. (2012).Staffing call centers with impatient customers: refinements to many-server asymptotics.Operat. Res. 60,461474.CrossRefGoogle Scholar
[35] Zolotarev, V. M. (1986).One-Dimensional Stable Distributions.American Mathematical Society,Providence, RI.CrossRefGoogle Scholar