Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T03:17:13.141Z Has data issue: false hasContentIssue false

Markov properties of diffusion local time: a martingale approach

Published online by Cambridge University Press:  01 July 2016

Paul McGill*
Affiliation:
The New University of Ulster
*
Postal address: Department of Mathematics, The New University of Ulster, Coleraine BT 52 1SA, N. Ireland.

Abstract

This paper uses martingale calculus in order to study the Markov properties of diffusion local time first discovered by Ray and Knight. The approach enables us to calculate the laws of the processes involved and is easily modified to deal with conditioning with respect to the excursion σ-fields.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1982 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Azema, J. and Yor, M. (1978) En guise d'introduction. In Temps Locaux, Astérisque 52–3, Société Mathématique de France.Google Scholar
[2] El-Karoui, N. and Chaleyat-Maurel, M. (1978) Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur R. Cas continu. In Temps Locaux, Astérisque 52–3, Société Mathématique de France.Google Scholar
[3] Gihman, I. I. and Skorohod, A. V. (1972) Stochastic Differential Equations. Springer-Verlag, Berlin.Google Scholar
[4] Ito, K. and McKean, H. P. (1965) Diffusion Processes and their Sample Paths. Springer-Verlag, Berlin.Google Scholar
[5] Jeulin, T. (1980) Semi-martingales et Grossissement d'une Filtration. Lecture Notes in Mathematics 833, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[6] Jeulin, T. and Yor, M. (1981) Sur les distributions de certaines fonctionelles du movement brownien. Seminaire de Probabilités XV, Lecture Notes in Mathematics 850, Springer-Verlag, Berlin.Google Scholar
[7] Knight, F. (1963) Random walks and a sojourn density of Brownian motion. Trans. Amer. Math. Soc. 107, 5686.Google Scholar
[8] McGill, P. (1981) A direct proof of the Ray-Knight theorem. Seminaire de Probabilités XV, Lecture Notes in Mathematics 850, Springer-Verlag, Berlin.Google Scholar
[9] McKean, H. P. (1969) Stochastic Integrals. Academic Press, New York.Google Scholar
[10] McKean, H. P. (1975) Brownian local times. Adv. Math. 15, 91111.Google Scholar
[11] Ray, D. B. (1963) Sojourn times of diffusion processes. Illinois J. Math. 7, 615630.Google Scholar
[12] Shiga, Y. and Watanabe, S. (1973) Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitsth. 27, 3746.Google Scholar
[13] Walsh, J. B. (1978) Excursions and local time. In Temps Locaux, Astérisque 52–3, Société Mathématique de France.Google Scholar
[14] Williams, D. (1969) Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75, 10351036.Google Scholar
[15] Williams, D. (1974) Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. (3) 28, 738768.Google Scholar
[16] Williams, D. (1979) Diffusions, Markov Processes, and Martingales. Wiley, Chichester.Google Scholar
[17] Williams, D. (1981) “To begin at the beginning …” In Stochastic Integrals, Lecture Notes in Mathematics 851, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[18] Yamada, T. and Watanabe, S. (1971) On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155167.Google Scholar
[19] Yor, M. (1978) Sur la continuité des temps locaux associés à certaines semi-martingales. In Temps Locaux, Astérisque 52–3, Société Mathématique de France.Google Scholar