Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T10:39:53.563Z Has data issue: false hasContentIssue false

First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds

Published online by Cambridge University Press:  03 September 2019

Adriana Uquillas*
Affiliation:
Escuela Politécnica Nacional
Adilson Simonis*
Affiliation:
Universidade de São Paulo
*
*Postal address: Facultad de Ciencias, Departamento de Matemáticas, Escuela Politécnica Nacional, Ladrón de Guevara E11253, PO Box 17-01-2759, Quito, Ecuador. Email address: adriana.uquillas@epn.edu.ec
**Postal address: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, Cidade Universitaria, São Paulo-SP, Brasil. Email address: asimonis@ime.usp.br

Abstract

We consider the nearest-neighbour simple exclusion process on the one-dimensional discrete torus $\mathbb{T}_N=\mathbb{Z}/N\mathbb{Z}$ , with random rates $c_N=\{c_{x,N}\colon x \in \mathbb{T}_N\}$ defined in terms of a homogeneous Poisson process on $\mathbb{R}$ with intensity $\lambda$ . Given a realization of the Poisson process, the jump rate along the edge $\{x,x+1\}$ is 1 if there is not any Poisson mark in $ (x,x+1) $ ; otherwise, it is $\lambda/N,\, \lambda \in( 0,1]$ . The density profile of this process with initial measure associated to an initial profile $\rho_0\colon \mathbb{R} \rightarrow [0,1]$ , evolves as the solution of a bounded diffusion random equation. This result follows from an appropriate quenched hydrodynamic limit. If $\lambda=1$ then $\rho$ is discontinuous at each Poisson mark with passage through the slow bonds, otherwise the conductance at the slow bonds decreases meaning no passage through the slow bonds in the continuum. The main results are concerned with upper and lower quenched and annealed bounds of $T_j$ , where $T_j$ is the first displacement time of a tagged particle in a stochastic cluster of size j (the cluster is defined via specific macroscopic density profiles). It is possible to observe that when time t grows, then $\mathbb{P}\{T_j \geq t\}$ decays quadratically in both the upper and lower bounds, and falls as slow as the presence of more Poisson marks neighbouring the tagged particle, as expected.

Type
Original Article
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Faggionato, A., Jara, M. and Landim, C. (2007). Hydrodynamic limit of one dimensional subdifusive exclusion processes with random conductance. Preprint. Available at arXiv:0709.0306.Google Scholar
Franco, T., Gonçalves, P. and Neumann, A. (2013). Hydrodynamical behavior of symmetric exclusion with slow bonds. Ann. Inst. H. Poincaré Prob. Statist. 49, 402427.CrossRefGoogle Scholar
Franco, T., Neumann, A. and Valle, G. (2011). Hydrodynamic limit for a type of exclusion process with slow bonds in dimension $d\geq 2.$ J. Appl. Prob. 48, 333351.CrossRefGoogle Scholar
Gonçalves, P. (2008). Central limit theorem for a tagged particle in asymmetric simple exclusion. Stoch. Process. Appl. 118, 474502.CrossRefGoogle Scholar
Jara, M. (2009). Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math. 62, 198214.CrossRefGoogle Scholar
Jara, M. (2011). Hydrodynamic limit of particle systems in inhomogeneous media. In Dynamics, Games and Science II (Springer Proceedings in Mathematics 2), Springer, Berlin, Heidelberg.Google Scholar
Jara, M. D. and Landim, C. (2006). Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. H. Poincaré Prob. Statist. 42, 567577.CrossRefGoogle Scholar
Jara, M. D. and Landim, C. (2008). Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Prob. Statist. 44, 341361.CrossRefGoogle Scholar
Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Springer, Berlin.CrossRefGoogle Scholar
Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible markov processes and applications to simple exclusion. Commun. Math. Phys. 104, 119.CrossRefGoogle Scholar
Mandl, P. (1968). Analytical Tratment of One-Dimensional Markov Processes. Springer, Heidelberg.Google Scholar
Rezakhanlou, F. (1994). Propagation of chaos for symmetric simple exclusion. Commun. Pure Appl. Math. 47, 943957.CrossRefGoogle Scholar
Seppäläinen, T. (2001). Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Statist. Phys. 102, 6996.CrossRefGoogle Scholar
Sethuraman, S., Varadhan, S. R. S. and Yau, H.-T. (2000). Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Commun. Pure Appl. Math. 53, 9721006.3.0.CO;2-#>CrossRefGoogle Scholar
Stone, C. (1963). Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math 7, 683–660.CrossRefGoogle Scholar
Varadhan, S. R. S. (1995). Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walks with simple exclusion. Ann. Inst. H. Poincaré Prob. Statist. 31, 273285.Google Scholar