Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-25T23:35:05.552Z Has data issue: false hasContentIssue false

Moving Mesh Finite Element Method for Unsteady Navier-Stokes Flow

Published online by Cambridge University Press:  17 January 2017

Yirong Wu*
Affiliation:
School of Mathematical Science, Zhejiang University, HangZhou, Zhejiang 310027, China
Heyu Wang*
Affiliation:
School of Mathematical Science, Zhejiang University, HangZhou, Zhejiang 310027, China
*
*Corresponding author. Email:wuwuyiyirongrong@163.com (Y. R. Wu), wang.heyu@gmail.com (H. Y.Wang)
*Corresponding author. Email:wuwuyiyirongrong@163.com (Y. R. Wu), wang.heyu@gmail.com (H. Y.Wang)
Get access

Abstract

In this paper, we use moving mesh finite element method based upon 4P1P1 element to solve the time-dependent Navier-Stokes equations in 2D. Two-layer nested meshes are used including velocity mesh and pressure mesh, and velocity mesh can be obtained by globally refining pressure mesh. We use hierarchy geometry tree to store the nested meshes. This data structure make convienence for adaptive mesh method and the construction of multigrid preconditioning. Several numerical problems are used to show the effect of moving mesh.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Li, J., He, Y. and Chen, Z., Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs, Computing, 86 (2009), pp. 3751.CrossRefGoogle Scholar
[2] Bochev, P. B., Dohrmann, C. R. and Gunzburger, M. D., Stabilization of low-order mixed finite elements for the stokes equations, SIAM J. Numer. Anal., 44 (2006), pp. 82101.Google Scholar
[3] Popiolek, T. L. and Awruch, A. M., Numerical simulation of incompressible flows using adaptive unstructured meshes and the pseudo-compressibility hypothesis, Adv. Eng. Software, 37 (2006), pp. 260274.Google Scholar
[4] Danaila, I., Hecht, F. and Masson, S. L., A newton method with adaptive finite elements for solving phase-change problems with natural convection, J. Comput. Phys., 274 (2014), pp. 826840.Google Scholar
[5] Ebedia, M. S., Davis, R. L. and Freund, R. W., Unsteady incompressible flow simulation using galerkin finite elements with spatial/temporal adaptation, in 47th AIAA Aerospace Sciences Meeting, Orlando, FL, 2009.Google Scholar
[6] Berrone, S. and Marro, M., Space-time adaptive simulations for unsteady navier-stokes problems, Comput. Fluids, 38 (2009), pp. 11321144.Google Scholar
[7] Zheng, H., Hou, Y. and Shi, F., A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow, SIAM J. Sci. Comput., 32 (2010), pp. 13461360.Google Scholar
[8] Di, Y., Li, R., Tang, T. and Zhang, P., Moving mesh finite element methods for the incompressible navier-stokes equations, SIAM J. Sci. Comput., 26 (2005), pp. 10361056.Google Scholar
[9] Fujima, S., Iso-p2p1/p1/p1 domain-decomposition/finite-element method for the navier-stokes equations, Contemp. Math., 218 (1998), pp. 246253.Google Scholar
[10] Bercovier, M. and Pironneau, O., Error estimates for finite element method solution of the stokes problem in the primitive variables, Numer. Math., 33 (1979), pp. 211224.Google Scholar
[11] Vanden-Abeele, D., Snyder, D., Detandt, Y. and Degrez, G., A kinetic energy-preserving p1isop2/p1 finite-element method for computing unsteady incompressible flows, Comput. Fluid Dyn., (2006), pp. 267272.Google Scholar
[12] Li, R., On multi-mesh h-adaptive methods, J. Sci. Comput., 24 (2005), pp. 321341.Google Scholar
[13] Winslow, A. M., Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh, J. Comput. Phys., 135 (1966), pp. 128138.Google Scholar
[14] Dvinsky, A. S., Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys., 95 (1991), pp. 450476.Google Scholar
[15] Cao, W., Huang, W. and Russell, R. D., An r-adaptive finite element method based upon moving mesh PDEs, J. Comput. Phys., 149 (1999), pp. 221244.Google Scholar
[16] Li, R., Liu, W., Tang, T. and Zhang, P., Moving mesh finite element methods based on harmonic maps, J. Comput. Phys., 170 (2001), pp. 562588.Google Scholar
[17] Lang, J., Cao, W., Huang, W. and Russell, R. D., A two-dimensional moving finite element method with local refinement based on a posteriori error estimates, Appl. Numer. Math., 46 (2003), pp. 7594.Google Scholar
[18] Huang, W. and Russel, R. D., Adaptive Moving Mesh Methods, Springer Science & Business Media, 2010.Google Scholar
[19] Haynes, R. D., Huang, W. and Zegeling, P. A., A numerical study of blowup in the harmonic map heat flow using the mmpde moving mesh method, Numer. Math. Theory Methods Appl., 6 (2013), pp. 364383.Google Scholar
[20] Elman, H. C., Silvester, D. J. and Wathen, A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics: with Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005.Google Scholar
[21] Zheng, H., Hou, Y. and Shi, F., Adaptive variational multiscale methods for incompressible flow based on two local gauss integrations, J. Sci. Comput., 229 (2010), pp. 70307041.Google Scholar