Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T17:32:47.593Z Has data issue: false hasContentIssue false

Rey Visual Design Learning Test performance correlates with white matter structure

Published online by Cambridge University Press:  24 June 2014

Stefan Begré*
Affiliation:
Division of Psychosomatic Medicine, Department of General Internal Medicine
Claus Kiefer
Affiliation:
Division of Psychosomatic Medicine, Department of General Internal Medicine Department of Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
Roland von Känel
Affiliation:
Division of Psychosomatic Medicine, Department of General Internal Medicine
Angela Frommer
Affiliation:
Division of Psychosomatic Medicine, Department of General Internal Medicine Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland
Andrea Federspiel
Affiliation:
Division of Psychosomatic Medicine, Department of General Internal Medicine Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland
*
Stefan Begré, MD, Division of Psychosomatic Medicine, Department of General Internal Medicine, Inselspital, Bern University Hospital, CH-3010 Berne, Switzerland. Tel: +41 31 632 83 61; Fax: +41 31 382 11 84; E-mail: stefan.begre@insel.ch

Abstract

Objective:

Studies exploring relation of visual memory to white matter are extensively lacking. The Rey Visual Design Learning Test (RVDLT) is an elementary motion, colour and word independent visual memory test. It avoids a significant contribution from as many additional higher order visual brain functions as possible to visual performance, such as three-dimensional, colour, motion or word-dependent brain operations. Based on previous results, we hypothesised that test performance would be related with white matter of dorsal hippocampal commissure, corpus callosum, posterior cingulate, superior longitudinal fascicle and internal capsule.

Methods:

In 14 healthy subjects, we measured intervoxel coherence (IC) by diffusion tensor imaging as an indication of connectivity and visual memory performance measured by the RVDLT. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index.

Results:

Using voxelwise linear regression analyses of the IC values, we found a significant and direct relationship between 11 clusters and visual memory test performance. The fact that memory performance correlated with white matter structure in left and right dorsal hippocampal commissure, left and right posterior cingulate, right callosal splenium, left and right superior longitudinal fascicle, right medial orbitofrontal region, left anterior cingulate, and left and right anterior limb of internal capsule emphasises our hypothesis.

Conclusion:

Our observations in healthy subjects suggest that individual differences in brain function related to the performance of a task of higher cognitive demands might partially be associated with structural variation of white matter regions.

Type
Research Article
Copyright
Copyright © 2009 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spreen, O, Strauss, E. A compendium of neuropsychological tests: administration, norms and commentary, New York: Oxford University Press, 1991. Google Scholar
Begré, S, Federspiel, A, Kiefer, C, Schroth, G, Strik, WK, Dierks, T. Alterations of white matter connectivity in first episode schizophrenia. Neurobiol Dis 2006;22:702709. Google Scholar
Nobili, F, Brugnolo, A, Calvini, Pet al. Resting SPECT-neuropsychology correlation in very mild Alzheimer’s disease. Clin Neurophysiol 2005;116:364375. CrossRefGoogle ScholarPubMed
Cohen, L, Henry, C, Dehaene, Set al. The pathophysiology of letter-by-letter reading. Neuropsychologia 2004;42:17681780. CrossRefGoogle ScholarPubMed
Begré, S, Federspiel, A, Kiefer, C, Schroth, G, Dierks, T, Strik, WK. Reduced hippocampal anisotropy related to anteriorization of alpha EEG in schizophrenia. Neuroreport 2003;14:739742. CrossRefGoogle ScholarPubMed
Schmidtke, K, Manner, H, Kaufmann, R, Schmolck, H. Cognitive procedural learning in patients with fronto-striatal lesions. Learn Mem 2002;9:419429. CrossRefGoogle ScholarPubMed
Dimond, SJ, Scammell, RE, Brouwers, EY, Weeks, R. Functions of the centre section (trunk) of the corpus callosum in man. Brain 1977;100:543562. CrossRefGoogle ScholarPubMed
Pierpaoli, C, Basser, PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996;36:893906. CrossRefGoogle Scholar
Skare, S, Li, T, Nordell, B, Ingvar, M. Noise considerations in the determination of diffusion tensor anisotropy. Magn Reson Imaging 2000;18:659669. CrossRefGoogle ScholarPubMed
Mottershead, JP, Schmierer, K, Clemence, Met al. High field MRI correlates of myelin content and axonal density in multiple sclerosis – a post-mortem study of the spinal cord. J Neurol 2003;250:12931301. CrossRefGoogle ScholarPubMed
Tuch, DS, Salat, DH, Wisco, JJ, Zaleta, AK, Hevelone, ND, Rosas, HD. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci U S A 2005;102:1221212217. CrossRefGoogle ScholarPubMed
O’Sullivan, M, Jones, DK, Summers, PE, Morris, RG, Williams, SC, Markus, HS. Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 2001;57:632638. CrossRefGoogle ScholarPubMed
Klingberg, T, Hedehus, M, Temple, Eet al. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 2000;25:493500. CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Sullivan, EV, Hedehus, M, Lim, KO, Adalsteinsson, E, Moseley, M. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 2000;44:259268. 3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Sun, Y, Du, XK, Zhang, ZX, Chen, X. [Relationship between the data from MR-diffusion tensor imaging and the clinical cognitive evaluation in Alzheimer’s disease]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2004;26:134138. Google ScholarPubMed
Fellgiebel, A, Muller, MJ, Wille, Pet al. Colour-coded diffusion-tensor-imaging of posterior cingulate fibre tracts in mild cognitive impairment. Neurobiol Aging 2005;26:11931198. CrossRefGoogle Scholar
Lim, KO, Ardekani, BA, Nierenberg, J, Butler, PD, Javitt, DC, Hoptman, MJ. Voxelwise correlational analyses of white matter integrity in multiple cognitive domains in schizophrenia. Am J Psychiatry 2006;163:20082010. CrossRefGoogle ScholarPubMed
Wu, Y, Storey, P, Cohen, BA, Epstein, LG, Edelman, RR, Ragin, AB. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 2006;27:656660. Google ScholarPubMed
Peters, A. The effects of normal aging on myelin and nerve fibres: a review. J Neurocytol 2002;31:581593. CrossRefGoogle ScholarPubMed
Oppenheim, C, Rodrigo, S, Poupon, Cet al. [Diffusion tensor MR imaging of the brain. Clinical applications.]. J Radiol 2004;85:287296. CrossRefGoogle ScholarPubMed
Begre, S, Frommer, A, Von Kanel, R, Kiefer, C, Federspiel, A. Relation of white matter anisotropy to visual memory in 17 healthy subjects. Brain Res 2007;1168:6066. CrossRefGoogle ScholarPubMed
Gloor, P, Salanova, V, Olivier, A, Quesney, LF. The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. Brain 1993;116(Pt 5):12491273. CrossRefGoogle ScholarPubMed
Ishai, A, Haxby, JV, Ungerleider, LG. Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage 2002;17:17291741. CrossRefGoogle ScholarPubMed
Boldrini, P, Zanella, R, Cantagallo, A, Basaglia, N. Partial hemispheric disconnection syndrome of traumatic origin. Cortex 1992;28:135143. CrossRefGoogle ScholarPubMed
Hasegawa, I. Neural mechanisms of memory retrieval: role of the prefrontal cortex. Rev Neurosci 2000;11:113125. CrossRefGoogle ScholarPubMed
Alsaadi, T, Binder, JR, Lazar, RM, Doorani, T, Mohr, JP. Pure topographic disorientation: a distinctive syndrome with varied localization. Neurology 2000;54:18641866. CrossRefGoogle ScholarPubMed
Berthoz, A. Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 1997;352:14371448. CrossRefGoogle ScholarPubMed
Tamura, H, Takahashi, S, Kurihara, N, Yamada, S, Hatazawa, J, Okudera, T. Practical visualization of internal structure of white matter for image interpretation: staining a spin-echo T2-weighted image with three echo-planar diffusion-weighted images. AJNR Am J Neuroradiol 2003;24:401409. Google ScholarPubMed
Nolte, J. The human brain: an introduction to its functional anatomy, 4th edn. St Louis: Mosby, Inc., 1999. Google Scholar
Jones, DK, Horsfield, MA, Simmons, A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999;42:515525. 3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Jones, DK, Symms, MR, Cercignani, M, Howard, RJ. The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 2005;26:546554. CrossRefGoogle ScholarPubMed
Basser, PJ, Pierpaoli, C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 1998;39:928934. CrossRefGoogle ScholarPubMed
Basser, PJ, Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209219. CrossRefGoogle ScholarPubMed
Talairach, J, Tournoux, P. A co-planar stereotactic atlas of the human brain: an approach to cerebral imaging, New York: Thieme Medical publishers Inc., 1988. Google Scholar
Nowinsky, L, Bryan, N, Rhaghavan, R. The electronic clinical brain atlas, New York: Thieme Medical Publisher Inc., 2004. Google Scholar
May, A. The contribution of functional neuroimaging to primary headaches. Neurol Sci 2004;25(Suppl 3):S85S88. CrossRefGoogle ScholarPubMed
Begre, S, Koenig, T. Cerebral disconnectivity: an early event in schizophrenia. Neuroscientist 2008;14:1945. CrossRefGoogle ScholarPubMed
Takahashi, S, Yonezawa, H, Takahashi, J, Kudo, M, Inoue, T, Tohgi, H. Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett 2002;332:4548. CrossRefGoogle ScholarPubMed
Moseley, M, Bammer, R, Illes, J. Diffusion-tensor imaging of cognitive performance. Brain Cogn 2002;50:396413. CrossRefGoogle ScholarPubMed
Muller, MJ, Greverus, D, Dellani, PRet al. Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 2005;28:10331042. CrossRefGoogle ScholarPubMed
Begré, S, Frommer, A, Von Kanel, R, Kiefer, C, Federspiel, A. Relation of white matter anisotropy to visual memory in 17 healthy subjects. Brain Res 2007;1168:6066. CrossRefGoogle ScholarPubMed
Begré, S, Federspiel, A, Kiefer, C, Schroth, G, Strik, WK, Dierks, T. Alterations of white matter connectivity in first episode schizophrenia. Neurobiol Dis 2006;22:702709. Google Scholar
Ridler, K, Veijola, JM, Tanskanen, Pet al. Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia. Proc Natl Acad Sci U S A 2006;103:1565115656. CrossRefGoogle ScholarPubMed
Antonova, E, Kumari, V, Morris, Ret al. The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry 2005;58:457467. CrossRefGoogle ScholarPubMed
Ho, BC, Andreasen, NC, Nopoulos, P, Arndt, S, Magnotta, V, Flaum, M. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003;60:585594. CrossRefGoogle ScholarPubMed
Palmini, AL, Gloor, P, Jones-Gotman, M. Pure amnestic seizures in temporal lobe epilepsy. Definition, clinical symptomatology and functional anatomical considerations. Brain 1992;115(Pt 3):749769. CrossRefGoogle ScholarPubMed
Poldrack, RA, Rodriguez, P. How do memory systems interact? Evidence from human classification learning. Neurobiol Learn Mem 2004;82:324332. CrossRefGoogle ScholarPubMed
Todd, JJ, Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 2004;428:751754. CrossRefGoogle ScholarPubMed
Frey, S, Petrides, M. Orbitofrontal cortex and memory formation. Neuron 2002;36:171176. CrossRefGoogle ScholarPubMed
Allman, JM, Hakeem, A, Erwin, JM, Nimchinsky, E, Hof, P. The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 2001;935:107117. CrossRefGoogle ScholarPubMed
Rushworth, MF, Behrens, TE, Rudebeck, PH, Walton, ME. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 2007;11:168176. CrossRefGoogle ScholarPubMed
Wiltgen, BJ, Brown, RA, Talton, LE, Silva, AJ. New circuits for old memories: the role of the neocortex in consolidation. Neuron 2004;44:101108. CrossRefGoogle ScholarPubMed
Beaulieu, C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 2002;15:435455. CrossRefGoogle ScholarPubMed
Grieve, SM, Williams, LM, Paul, RH, Clark, CR, Gordon, E. Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol 2007;28:226235. Google ScholarPubMed