Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T12:35:42.111Z Has data issue: false hasContentIssue false

Magnesium Isotopes

Tracer for the Global Biogeochemical Cycle of Magnesium Past and Present or Archive of Alteration?

Published online by Cambridge University Press:  07 February 2022

Edward T. Tipper
Affiliation:
University of Cambridge

Summary

Magnesium is a major constituent in silicate and carbonate minerals, the hydrosphere and the biosphere. Magnesium is constantly cycled between these reservoirs. Since each of the major planetary reservoirs of magnesium have different magnesium isotope ratios, there is scope to use magnesium isotope ratios to trace 1) the processes that cycle Magnesium at a spatial scales from the entire planet to microscopic and 2) the relative fluxes between these reservoirs. This review summarises some of the key motivations, successes and challenges facing the use of magnesium isotopes to construct a budget of seawater magnesium, present and past.
Get access
Type
Element
Information
Online ISBN: 9781108991698
Publisher: Cambridge University Press
Print publication: 03 March 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goldberg, E., Chapter 12: Biogeochemistry of Trace Metals, in Treatise on marine ecology and paleoecology, ed. by Hedgepeth, J., vol. 1, pp. 345357 (1957).Google Scholar
Taylor, S. R., McLennan, S. M., The continental crust. Its evolution and composition (Blackwell Science, Oxford, 1985).Google Scholar
Edmond, J. M. et al., Earth and Planet. Sci. Lett. 46, 118 (1979).CrossRefGoogle Scholar
Kump, L. R., The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater Composition During the Phanerozoic. In Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers. Geophysical Monograph Series 178 (American Geophysical Union (AGU), 2008), pp. 275283.Google Scholar
Holland, H. D., Zimmermann, H., Int. Geol. Rev. 42 (2000).CrossRefGoogle Scholar
Isson, T. T., Planavsky, N. J., Nature 560, 471475 (2018).Google Scholar
Dickson, J. A. D., J. Sediment. Res. 74, 355365 (2004).Google Scholar
Gothmann, A. M. et al., Geochim. Cosmochim. Act. 160, 188208 (2015).CrossRefGoogle Scholar
Coggon, R. M. et al., Science 327, 1114 (2010).Google Scholar
Rausch, S. et al., Earth and Planet. Sci. Lett. 362, 215224 (2013).Google Scholar
Brennan, S. T. et al., Am. J. Sci. 313, 713 (2013).Google Scholar
Lowenstein, T. K. et al., Science 294, 10861088 (2001).Google Scholar
Timofeeff, M. N. et al., Geochim. Cosmochim. Act. 70, 19771994 (2006).CrossRefGoogle Scholar
Horita, J. et al., Geochim. Cosmochim. Act. 66, 37333756 (2002).CrossRefGoogle Scholar
Turchyn, A. V., DePaolo, D. J., Ann. Rev. Earth Plan. Sci. 47, 197224 (2019).CrossRefGoogle Scholar
Elderfield, H., Schultz, A., Ann. Rev. Earth Plan. Sci. 24, 191224 (1996).CrossRefGoogle Scholar
Shalev, N. et al., Nat. Commun. 10, 5646 (2019).CrossRefGoogle Scholar
Berner, R. A. et al., Am. J. Sci. 283, 641683 (1983).CrossRefGoogle Scholar
Coogan, L. A., Dosso, S. E., Earth and Planet. Sci. Lett. 415, 3846 (2015).Google Scholar
Holland, H. D., Am. J. Sci. 305, 220239 (2005).Google Scholar
Spencer, R., Hardie, L., in Fluid mineral interactions: a tribute to H. P Eugster: ed. by Spencer, R. J. and Chou, I. M. , Geochemical Society Special publication 1990 pp. 409419.Google Scholar
Young, E., Galy, A., Rev. Min. Geochem. 55, 197230 (2004).Google Scholar
Daughtry, A. C. et al., Geochim. Cosmochim. Act. 26, 857866 (1962).Google Scholar
Galy, A. et al., Int. J. Mass. Spec. 208, 8998 (2001).Google Scholar
Tipper, E. T. et al., Earth and Planet. Sci. Lett. 250, 241253 (2006).Google Scholar
Fantle, M. S. et al., Annu. Rev. Earth Planet. Sci. 48, 549583 (2020).CrossRefGoogle Scholar
Tipper, E. T. et al., Chem. Geol. 257, 6575 (2008).CrossRefGoogle Scholar
Bohlin, M. S. et al., Rapid Communications in Mass Spectrometry. 32, 93104 (2018).Google Scholar
Coath, C. D. et al., Chem. Geol. 451, 7889 (2017).Google Scholar
Teng, F.-Z., “Magnesium Isotope Geochemistry”. In: Reviews in Mineralogy and Geochemistry 82.1 (2017), pp. 219287.Google Scholar
Schauble, E. A., Rev. Min. Geochem. 55, 65112 (2004).Google Scholar
Young, E. et al., Geochim. Cosmochim. Act. 66, 10951104 (2002).Google Scholar
Schauble, E. A., Geochim. Cosmochim. Act. 75, 844869 (2011).CrossRefGoogle Scholar
Schott, J. et al., Chem. Geol. 445, 120134 (2016).Google Scholar
Mavromatis, V. et al., Geochim. Cosmochim. Act. 114, 188203 (2013).Google Scholar
Hindshaw, R. S. et al., Earth and Planet. Sci. Lett. 531, 115980 (2020).Google Scholar
Li, W. et al., Earth and Planet. Sci. Lett. 394, 8293 (2014).Google Scholar
Wombacher, F. et al., Geochim. Cosmochim. Act. 75, 57975818 (2011).Google Scholar
Schuessler, J. A. et al., Chem. Geol. 497, 7487 (2018).Google Scholar
Dunlea, A. G. et al., Nat. Commun. 8, 844 (2017).CrossRefGoogle Scholar
Tipper, E. T. et al., Global Biogeochem. Cycles 24, GB3019 (2010).Google Scholar
Bolou-Bi, E. B. et al., Geochim. Cosmochim. Act. 87, 341355 (2012).Google Scholar
Li, M. Y. H. et al., Earth and Planet. Sci. Lett. 553 (2021).CrossRefGoogle Scholar
Opfergelt, S. et al., Earth and Planet. Sci. Lett. 341, 176185 (2012).Google Scholar
Pogge von Strandmann, P. A. E. et al., Earth and Planet. Sci. Lett. 276, 187197 (2008).Google Scholar
Ma, L. et al., Chem. Geol. 397, 3750 (2015).CrossRefGoogle Scholar
Gao, T. et al., Geochim. Cosmochim. Act. 237, 205222 (2018).Google Scholar
Huang, K.-J. et al., Earth and Planet. Sci. Lett. 359–360, 7383 (2012).CrossRefGoogle Scholar
Opfergelt, S. et al., Geochim. Cosmochim. Act. 125, 110130 (2014).CrossRefGoogle Scholar
Ryu, J.-S. et al., Chem. Geol. 445, 135145 (2016).Google Scholar
Wimpenny, J. et al., Geochim. Cosmochim. Act. 128, 178194 (2014).Google Scholar
Mayfield, K. K. et al., Nat. Commun. 12, 148 (2021).CrossRefGoogle Scholar
Mottl, M. J., Wheat, C. G., Geochim. Cosmochim. Act. 58, 22252237 (1994).Google Scholar
Pogge von Strandmann, P A. E. et al., Front. Earth Sci. 8, 109 (2020).Google Scholar
Santiago Ramos, D. P et al., Earth and Planet. Sci. Lett. 541, 116290 (2020).Google Scholar
Pogge von Strandmann, P A. E. et al., Biogeosciences 11, 51555168 (2014).Google Scholar
Higgins, J. A., Schrag, D. P, Earth and Planet. Sci. Lett. 416, 7381 (2015).Google Scholar
Gothmann, A. M. et al., Geology 45, 10391042 (2017).Google Scholar
Pogge von Strandmann, P A. E., Geochem. Geophys. Geosyst. 9 (2008).Google Scholar
Saenger, C., Wang, Z., Quat. Sci. Rev. 90, 121 (2014).CrossRefGoogle Scholar
Broecker, W., Am. J. Sci. 313, 776789 (2013).Google Scholar
Higgins, J. A., Schrag, D. P, Earth and Planet. Sci. Lett. 357–358, 386396 (2012).CrossRefGoogle Scholar
Fantle, M. S., Higgins, J., Geochim. Cosmochim. Act. 142, 458481 (2014).Google Scholar
Ahm, A.-S. C. et al., Geochim. Cosmochim. Act. 236, 140159 (2018).Google Scholar
Ahm, A.-S. C. et al., 506, 292307 (2019).Google Scholar
Hoffman, P F., Lamothe, K. G., Proc. Nat. Acad. of Sciences. 116, 1887418879 (2019).Google Scholar
He, R. et al., Chem. Geol. 558, 119876 (2020).Google Scholar
Riechelmann, S. et al., Geochim. Cosmochim. Act. 235, 333359 (2018).Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnesium Isotopes
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Magnesium Isotopes
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Magnesium Isotopes
Available formats
×