Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T03:10:18.472Z Has data issue: false hasContentIssue false

Epsilon-Near-Zero Metamaterials

Published online by Cambridge University Press:  21 December 2021

Yue Li
Affiliation:
Tsinghua University, Beijing
Ziheng Zhou
Affiliation:
Tsinghua University, Beijing
Yijing He
Affiliation:
Tsinghua University, Beijing
Hao Li
Affiliation:
Tsinghua University, Beijing

Summary

This Element introduces the exotic wave phenomena arising from the extremely small optical refractive index, and sheds light on the underlying mechanisms, with a primary focus on the basic concepts and fundamental wave physics. The authors reveal the exciting applications of ENZ metamaterials, which have profound impacts over a wide range of fields of science and technology. The sections are organized as follows: in Section 2, the authors demonstrate the extraordinary wave properties in ENZ metamaterials, analyzing the unique wave dynamics and the resulting effects. Section 3 is dedicated to introducing various realization methods of the ENZ metamaterials with periodic and non-periodic styles. The applications of ENZ metamaterials are discussed in Sections 4 and 5, from the perspectives of microwave engineering, optics, and quantum physics. The authors close in Section 6 by presenting an outlook on the development of ENZ metamaterials and discussing the key challenges addressed in future works.
Get access
Type
Element
Information
Online ISBN: 9781009128339
Publisher: Cambridge University Press
Print publication: 03 February 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zouhdi, S., Sihvola, A., and Arsalane, M., Advances in Electromagnetics of Complex Media and Metamaterials. Dordrecht: Springer Netherlands, 2002.CrossRefGoogle Scholar
Marqués, R., Martín, F., and Sorolla, M., Metamaterials with Negative Parameters. Hoboken, NJ: John Wiley & Sons, Inc., 2007.CrossRefGoogle Scholar
Caloz, C. and Itoh, T., Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Hoboken, NJ: John Wiley & Sons, Inc., 2005.CrossRefGoogle Scholar
Cai, W. and Shalaev, V., Optical Metamaterials. New York: Springer, 2010.CrossRefGoogle Scholar
Cui, T. J., Smith, D. R., and Liu, R., Metamaterials. Boston, MA: Springer, 2010.Google Scholar
Engheta, N. and Ziolkowski, R. W., Metamaterials. Hoboken, NJ: John Wiley & Sons, 2006.Google Scholar
Zheludev, N. I. and Kivshar, Y. S., From metamaterials to metadevices, Nat. Mater., 11, 11, 917924 (2012).Google Scholar
Shaltout, A. M., Kinsey, N., Kim, J. et al., Development of Optical Metasurfaces: Emerging Concepts and New Materials, Proc. IEEE, 104, 12, 22702287 (2016).CrossRefGoogle Scholar
Liberal, I. and Engheta, N., Near-zero refractive index photonics, Nat. Photonics, 11, 3, 149158 (2017).CrossRefGoogle Scholar
Reshef, O., De Leon, I., Alam, M. Z., and Boyd, R. W., Nonlinear optical effects in epsilon-near-zero media, Nat. Rev. Mater., 4, 8, 535551 (2019).CrossRefGoogle Scholar
Niu, X., Hu, X., Chu, S., and Gong, Q., Epsilon-near-zero photonics: a new platform for integrated devices, Adv. Opt. Mater., 6, 10, 136 (2018).Google Scholar
Cheng, Q., Jiang, W. X., and Cui, T. J., Spatial power combination for omnidirectional radiation via anisotropic metamaterials, Phys. Rev. Lett., 108, 21, 26 (2012).CrossRefGoogle ScholarPubMed
Liu, F., Huang, X., and Chan, C. T., Dirac cones at k→= 0 in acoustic crystals and zero refractive index acoustic materials, Appl. Phys. Lett., 100, 7 (2012).Google Scholar
Li, Y., Zhu, K., Peng, Y. et al., Thermal meta-device in analogue of zero-index photonics, Nat. Mater., 18, 1, 4854 (2019).CrossRefGoogle ScholarPubMed
Kinsey, N., DeVault, C., Boltasseva, A., and Shalaev, V. M., Near-zero-index materials for photonics, Nat. Rev. Mater., 4, 12, 742760 (2019).Google Scholar
Ziolkowski, R. W., Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E, 70, 4, 046608 (2004).CrossRefGoogle ScholarPubMed
Silveirinha, M. and Engheta, N., Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials, Phys. Rev. Lett., 97, 15, 157403 (2006).CrossRefGoogle ScholarPubMed
Edwards, B., Alù, A., Young, M. E., Silveirinha, M., and Engheta, N., Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide, Phys. Rev. Lett., 100, 3, 033903 (2008).CrossRefGoogle ScholarPubMed
Liu, R., Cheng, Q.. Hand, T. et al., Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies, Phys. Rev. Lett., 100, 2, 023903 (2008).CrossRefGoogle ScholarPubMed
Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., and Vincent, P., A Metamaterial for Directive Emission, Phys. Rev. Lett., 89, 21, 213902 (2002).CrossRefGoogle ScholarPubMed
Ciattoni, A., Rizza, C., and Palange, E., Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity, Phys. Rev. A, 81, 4, 043839 (2010).CrossRefGoogle Scholar
Suchowski, H., O’Brien, K., Wong, Z. J. et al., Phase mismatch-free nonlinear propagation in optical zero-index materials, Science, 342, 6163, 12231226 (2013).Google Scholar
Pollard, R. J., Murphy, A., Hendren, W. R. et al., nonlocalities, Optical and additional waves in epsilon-near-zero metamaterials, Phys. Rev. Lett., 102, 12, 127405 (2009).CrossRefGoogle ScholarPubMed
Davoyan, A. R., Mahmoud, A. M., and Engheta, N., Optical isolation with epsilon-near-zero metamaterials, Opt. Express, 21, 3, 3279 (2013).Google Scholar
Fleury, R. and Alù, A., Enhanced superradiance in epsilon-near-zero plasmonic channels, Phys. Rev. B, 87, 20, 201101 (2013).CrossRefGoogle Scholar
Rotman, W., Plasma simulation by artificial dielectrics and parallel-plate media, IRE Trans. Antennas Propag., 10, 1, 8295 (1962).Google Scholar
Sanada, A., Kimura, M., Awai, I., Caloz, C., and Itoh, T., A planar zeroth-order resonator antenna using a left-handed transmission line, Conf. Proceedings- Eur. Microw. Conf., 3, 13411344 (2004).Google Scholar
Moitra, P., Yang, Y., Anderson, Z. et al., Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics, 7, 10, 791795 (2013).CrossRefGoogle Scholar
Huang, X., Lai, Y., Hang, Z. H., Zheng, H., and Chan, C. T., Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater., 10, 8, 582586 (2011).Google Scholar
Li, Y., Kita, S., Muñoz, P. et et al., On-chip zero-index metamaterials, Nat. Photonics, 9, 11, 738742 (2015).Google Scholar
Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B., and Engheta, N., Photonic doping of epsilon-near-zero media, Science, 355, 6329, 10581062 (2017).Google Scholar
Zhou, Z., Li, Y., Li, H. et al., Substrate-integrated photonic doping for near-zero-index devices, Nat. Commun., 10, 1, 4132 (2019).Google Scholar
Engheta, N., Salandrino, A., and Alù, A., Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Phys. Rev. Lett., 95, 9, 095504 (2005).Google Scholar
Engheta, N., Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials, Science, 317, 5845, 16981702 (2007).Google Scholar
Alù, A. and Engheta, N., All optical metamaterial circuit board at the nanoscale, Phys. Rev. Lett., 103, 14, 143902 (2009).Google Scholar
Abbasi, F. and Engheta, N., Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks, Opt. Express, 22, 21, 25109 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Liberal, I., Della Giovampaola, C., and Engheta, N., Waveguide metatronics: lumped circuitry based on structural dispersion, Sci. Adv., 2, 6, e1501790 (2016).CrossRefGoogle ScholarPubMed
Khurgin, J. B. and Boltasseva, A., Reflecting upon the losses in plasmonics and metamaterials, MRS Bull., 37, 8, 768779 (2012).Google Scholar
Khurgin, J. B., How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol., 10, 1, 26 (2015).Google Scholar
Johnson, P. B. and Christy, R. W., Optical constants of the noble metals, Phys. Rev. B, 6, 12, 43704379 (1972).Google Scholar
Silveirinha, M. and Engheta, N., Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media, Phys. Rev. B, 75, 7, 075119 (2007).CrossRefGoogle Scholar
Mahmoud, A. M. and Engheta, N., Wave–matter interactions in epsilon-and-mu-near-zero structures, Nat. Commun., 5, 1, 5638 (2014).Google Scholar
Liberal, I., Mahmoud, A. M., and Engheta, N., Geometry-invariant resonant cavities, Nat. Commun., 7, 1, 10989 (2016).CrossRefGoogle ScholarPubMed
Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W., and Kuipers, L., Light passing through subwavelength apertures, Rev. Mod. Phys., 82, 1, 729787 (2010).Google Scholar
Castaldi, G., Gallina, I., Galdi, V., Alù, A., and Engheta, N., Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer, Phys. Rev. B, 83, 8, 081105 (2011).Google Scholar
Silveirinha, M. G. and Engheta, N., Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials, Phys. Rev. B, 76, 24, 245109 (2007).Google Scholar
Alù, A., Silveirinha, M. G., and Engheta, N., Transmission-line analysis of ε-Near-Zero-filled narrow channels, Phys. Rev. E, 78, 1, 016604 (2008).CrossRefGoogle ScholarPubMed
Marcos, J. S., Silveirinha, M. G., and Engheta, N., µ -near-zero supercoupling, Phys. Rev. B, 91, 19, 195112 (2015).CrossRefGoogle Scholar
Feng, H. Ma, J. Hui Shi, Q. Cheng, and T. Jun Cui, Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide, Appl. Phys. Lett., 103, 2, 021908 (2013).Google Scholar
Alù, A. and Engheta, N., Light squeezing through arbitrarily shaped plasmonic channels and sharp bends, Phys. Rev. B, 78, 3, 035440 (2008).Google Scholar
Edwards, B., Alù, A., Silveirinha, M. G., and Engheta, N., Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects, J. Appl. Phys., 105, 4, 044905 (2009).CrossRefGoogle Scholar
Liu, L., Hu, C., Zhao, Z., and Luo, X., Multi-passband tunneling effect in multilayered Epsilon-Near-Zero Metamaterials, Opt. Express, 17, 14, 12183 (2009).Google Scholar
Vojnovic, N., Jokanovic, B., Radovanovic, M., and Mesa, F., Tunable second-order bandpass filter based on dual ENZ waveguide, 2015 9th Int. Congr. Adv. Electromagn. Mater. Microwaves Opt. METAMATERIALS 2015, September, 316–318 (2015).Google Scholar
Mitrovic, M., Jokanovic, B., and Vojnovic, N., Wideband tuning of the tunneling frequency in a narrowed epsilon-near-zero channel, IEEE Antennas Wirel. Propag. Lett., 12, 631634 (2013).Google Scholar
Vojnovic, N., Jokanovic, B., Radovanovic, M., Medina, F., and Mesa, F., Modeling of nonresonant longitudinal and inclined slots for resonance tuning in ENZ waveguide structures, IEEE Trans. Antennas Propag., 63, 11, 51075113 (2015).CrossRefGoogle Scholar
Liu, Y., Sun, F., Yang, Y. et al., Broadband electromagnetic wave tunneling with transmuted material singularity, Phys. Rev. Lett., 125, 20, 207401 (2020).Google Scholar
Adams, D. C., Inampudi, S., Ribaudo, T. et al., Funneling light through a subwavelength aperture with epsilon-near-zero materials, Phys. Rev. Lett., 107, 13, 133901 (2011).CrossRefGoogle ScholarPubMed
Li, Y. and Engheta, N., Supercoupling of surface waves with ε-near-zero metastructures, Phys. Rev. B – Condens. Matter Mater. Phys., 90, 20, 201107 (2014).CrossRefGoogle Scholar
Li, Z., Sun, Y., Sun, H. et al., J. Phys. D. Appl. Phys., 50, 37 (2017).Google Scholar
Alu, A. and Engheta, N., Coaxial-to-waveguide matching with ε-near-zero ultranarrow channels and bends, IEEE Trans. Antennas Propag., 58, 2, 328339 (2010).CrossRefGoogle Scholar
Li, Y., Plasmonic Optics: Theory and Applications (SPIE Press, 2017).CrossRefGoogle ScholarPubMed
West, P., Ishii, S., Naik, G. et al., Searching for better plasmonic materials. Las. Photon. Rev. 4, 6, 795808 (2010).Google Scholar
Ordal, M., Bell, R., Alexander, R. Jr, Long, L. and Querry, M., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W., Appl. Opt., 24, 4493 (1985).Google Scholar
Boltasseva, A., and Atwater, H., Low-loss plasmonic metamaterials, Science, 331, 290–291 (2011).Google ScholarPubMed
Naik, G., Kim, J., and Boltasseva, A., Oxides and nitrides as alternative plasmonic materials in the optical range, Opt. Mater. Express, 1, 6, 10901099 (2011).Google Scholar
Vassant, S., Archambault, A., Marquier, F. et al., Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett., 109, 237401 (2012).Google Scholar
Campione, S., Brener, I., and Marquier, F., Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B, 91, 12, 121408 (2015).CrossRefGoogle Scholar
de Ceglia, D., Campione, S., Vincenti, M. A., Capolino, F., Scalora, M., Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties. Phys. Rev. B, 87, 15, 155140 (2013).CrossRefGoogle Scholar
Ou, J., So, J.-K., Adamo, G. et al., Ultraviolet and visible range plasmonics of a topological insulator Bi1.5Sb0.5Te1.8Se1.2, Nat. Commun., 5, 5139 (2014).Google Scholar
Giovampaola, C. and Engheta, N., Plasmonics without negative dielectrics. Phys. Rev. B, 93, 19, 195152 (2016).Google Scholar
Li, Y., Liberal, I., and Engheta, N., Structural dispersion–based reduction of loss in epsilon-near-zero and surface plasmon polariton waves, Sci. Adv., 5, eaav3764 (2019).Google Scholar
Javani, M. and Stockman, M., Real and imaginary properties of epsilon-near-zero materials. Phys. Rev. Lett., 117, 10, 107404 (2016).Google Scholar
Sun, L. and Yu, K., Strategy for designing broadband epsilon-near-zero metamaterials. J. Opt. Soc. Am., B 29, 5, 984989 (2012).Google Scholar
Li, Z., Liu, Z., and Aydin, K., Wideband zero-index metacrystal with high transmission at visible frequencies, J. Opt. Soc. Am. B., 34, 7, D13D17 (2017).Google Scholar
Maas, R., Parsons, J., Engheta, N., and Polman, A., Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths, Nat. Photon., 7, 11, 907912 (2013).Google Scholar
Forati, E. and Hanson, G., On the epsilon near zero condition for spatially dispersive materials, New J. Phys., 15, 12, 123027 (2013).Google Scholar
Luo, J., Chen, H., Hou, B., Xu, P., and Lai, Y., Nonlocality-induced negative refraction and subwavelength imaging by parabolic dispersions in metal–dielectric multilayered structures with effective zero permittivity, Plasmonics, 8, 2, 10951099 (2013).Google Scholar
Shen, L., Yang, T., and Chau, Y., 50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion, Appl. Phys. Lett., 90, 25, 251909 (2007).Google Scholar
Silveirinha, M., and Belov, P., Spatial dispersion in lattices of split ring resonators with permeability near zero, Phys. Rev., B 77, 23, 233104 (2008).CrossRefGoogle Scholar
Moitra, P., Yang, Y., Anderson, Z. et al., Realization of an all-dielectric zero-index optical metamaterial, Nature Photon., 7, 10, 791795 (2013).Google Scholar
Zhou, Y., He, X. T., Zhao, F. L., and Dong, J. W., Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals, Opt. Lett., 41, 10, 22092212 (2016).Google Scholar
Luo, J., and Lai, Y., Epsilon-near-zero or mu-near-zero materials composed of dielectric photonic crystals, Sci. China Inf. Sci., 56, 12, 110 (2013).Google Scholar
Iizuka, H., and Engheta, N., Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal, Phys. Rev. B, 90, 11, 115412 (2014).Google Scholar
Wu, Y., A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal, Opt Express., 22, 1906–17, 2014.Google Scholar
Lin, Z., Christakis, L., Li, Y. et al., Topology-optimized dual-polarization Dirac cones, Phys. Rev. B, 97, 08, 081408 (2018).Google Scholar
Minkov, M., Williamson, I., Xiao, M., and Fan, S., Zero-index bound states in the continuum, Phys. Rev. Lett., 121, 26, 263901 (2018).Google Scholar
Tang, H., DeVault, C., Camayd-Muñoz, S. et al., Low-loss zero-index materials, Nano Lett., 21, 2, 914920 (2021).Google Scholar
Dong, T., Liang, J., Camayd-Muñoz, S. et al., Ultra-low-loss on-chip zero-index materials, Light-Sci. Appl., 10, 1, 19 (2021).Google Scholar
Selvanayagam, M. and Eleftheriades, G., Negative-refractive-index transmission lines with expanded unit cells, IEEE Trans. Antennas Propag., 56, 11, 35923596 (2008).Google Scholar
Jiang, H., Liu, W., Yu, K. et al., Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials, Phys. Rev. B, 91, 4, 045302 (2015).CrossRefGoogle Scholar
Li, Y., Jiang, H. T., Liu, W. W. et al., Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials, Europhys. Lett., 113, 5, 57006 (2016).Google Scholar
Silveirinha, M., Alù, A., and Engheta, N., Parallel-plate metamaterials for cloaking structures, Phys. Rev. E, 75, 3, 036603-16 (2007).Google Scholar
Pozar, D. M., Microwave Engineering, 4th ed. (John Wiley & Sons, Inc., New York, 2012).Google Scholar
Cassivi, Y., Perregrini, L., Arioni, P. et al., Dispersion characteristics of substrate integrated rectangular waveguide, IEEE Microw. Wireless Compon. Lett., 12, 9, 333335 (2002).Google Scholar
Vesseur, E., Coenen, T., Caglayan, H., Engheta, N., and Polman, A., Experimental verification of n=0 structures for visible light, Physical Review Letters, 110, 1, 013902 (2013).Google Scholar
Reshef, O., Camayd-Muñoz, P., Vulis, D. et al., Direct observation of phase-free propagation in a silicon waveguide, ACS Photonics, 4, 10, 23852389 (2017).Google Scholar
Luo, J., Lu, W., Hang, Z. et al., Phys. Rev. Lett., 112, 7, 073903 (2014).Google Scholar
Ma, H. F., Shi, J. H., Cheng, Q., and Cui, T. J., Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide, Appl. Phys. Lett., 103, 2, 021908 (2013).Google Scholar
Luo, J., Xu, P., Chen, H. et al., Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials, Appl. Phys. Lett., 100, 22, 221903 (2012).Google Scholar
Luo, J., and Lai, Y., Anisotropic zero-index waveguide with arbitrary shapes, Sci. Rep., 4, 1, 5875 (2014).Google Scholar
Ji, W., Luo, J., and Lai, Y., Extremely anisotropic epsilon-near-zero media in waveguide metamaterials, Opt. Express, 27, 14, 1946319473 (2019).CrossRefGoogle ScholarPubMed
Shalin, A. S., Ginzburg, P., Orlov, A. A. et al., Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials, Phys. Rev. B, 91, 12, 125426 (2015).Google Scholar
Luo, J., Xu, P., Gao, L., Lai, Y., and Chen, H., Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects, Plasmonics, 7, 2, 353–358 (2012).Google Scholar
Wang, T., Luo, J., Gao, L., Xu, P., and Lai, Y., Equivalent perfect magnetic conductor based on epsilon-near-zero media, Appl. Phys. Lett., 104, 21, 211904 (2014).Google Scholar
Jin, Y., and He, S. L., Enhancing and suppressing radiation with some permeability-near-zero structures, Opt. Express, 18, 16, 1658716593 (2010).Google Scholar
Hao, J., Yan, W., and Qiu, M., Super-reflection and cloaking based on zero index metamaterial, Appl. Phys. Lett., 96, 10, 101109 (2010).Google Scholar
Nguyen, V. C., Chen, L., and Halterman, K., Total transmission and total reflection by zero index metamaterials with defects, Phys. Rev. Lett., 105, 23, 233908 (2010).Google Scholar
Xu, Y., and Chen, H., Total reflection and transmission by epsilon-near-zero metamaterials with defects, Appl. Phys. Lett., 98, 11, 113501 (2011).CrossRefGoogle Scholar
Wang, T., Luo, J., Gao, L., Xu, P., and Lai, Y., Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects, J. Opt. Soc. Am. B, 30, 7, 1878–1884 (2013).Google Scholar
Luo, J., Hang, Z., Chan, C., and Lai, Y., Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions, Laser Photonics Rev., 9, 5, 523529 (2015).Google Scholar
Luo, J., Liu, B., Hang, Z., and Lai, Y., Coherent Perfect Absorption via Photonic Doping of Zero-Index Media, Laser Photonics Rev., 12, 8, 1800001 (2018).Google Scholar
Luo, J., Li, J., and Lai, Y., Electromagnetic impurity-immunity induced by parity-time symmetry, Phys. Rev. X, 8, 3, 031035 (2018).Google Scholar
Liberal, I., Li, Y., and Engheta, N., Reconfigurable epsilon-near-zero metasurfaces via photonic doping, Nanophotonics, 7, 6, 1117–1127 (2018).Google Scholar
Coppolaro, M., Moccia, M., Castaldi, G., Engheta, N., and Galdi, V., Non-Hermitian doping of epsilon-near-zero media, Proceedings of the National Academy of Sciences, 117, 25, 13921 (2020).Google Scholar
Malléjac, M., Merkel, A., Tournat, V., Groby, J.-P., and Romero-García, V., Doping of a plate-type acoustic metamaterial, Phys. Rev. B, 102, 6, 060302 (2020).Google Scholar
Sanada, A., Kimura, M., Awai, I., Caloz, C., and Itoh, T., A planar zeroth-order resonator antenna using a left-handed transmission line, 34th European Microwave Conference, 1341–1344 (2004).Google Scholar
Kim, J., Kim, G., Seong, W., and Choi, J., A tunable internal antenna with an epsilon negative zeroth order resonator for DVB-H Service, IEEE Trans. Antennas Propag., 57, 12, 40144017 (2009).Google Scholar
Mitra, D., Ghosh, B., Sarkhel, A., and Bhadra Chaudhuri, S. R., A miniaturized ring slot antenna design with enhanced radiation characteristics, IEEE Trans. Antennas Propag., 64, 1, 300305 (2016).Google Scholar
Jahani, S., Rashed-Mohassel, J., and Shahabadi, M., Miniaturization of circular patch antennas using MNG metamaterials, , IEEE Antennas Wireless Propag. Lett., 9, 11941196 (2010).Google Scholar
Li, J., Salandrino, A., and Engheta, N., Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B., 76, 24, 245403 (2007).Google Scholar
Xiong, J., Lin, X., Yu, Y. et al., Novel flexible dual-frequency broadside radiating rectangular patch antennas based on complementary planar ENZ or MNZ metamaterials, IEEE Trans. Antennas Propag., 60, 8, 39583961 (2012).CrossRefGoogle Scholar
Soric, J. C., Engheta, N., Maci, S., and Alu, A., Omnidirectional metamaterial antennas based on ε-near-zero channel matching, IEEE Trans. Antennas Propag., 61, 1, 3344 (2013).Google Scholar
Park, J., Ryu, Y., Lee, J., and Lee, J., Epsilon negative zeroth-order resonator antenna, IEEE Trans. Antennas Propag., 55, 12, 37103712 (2007).Google Scholar
Zhou, Z. and Li, Y., Effective epsilon-near-zero (ENZ) antenna based on transverse cutoff mode, IEEE Trans. Antennas Propag., 67, 4, 22892297, (2019).Google Scholar
Zhou, Z. and Li, Y., A photonic-doping-inspired SIW antenna with length-invariant operating frequency, IEEE Trans. Antennas Propag., 68, 7, 51515158 (2020).Google Scholar
Hu, Z., Chen, C., Zhou, Z., and Li, Y., An epsilon-near-zero-inspired PDMS substrate antenna with deformation-insensitive operating frequency, IEEE Antennas Wireless Propag. Lett., 19, 9, 15911595 (2020).Google Scholar
Lovat, G., Burghignoli, P., Capolino, F., Jackson, D. R., and Wilton, D. R., Analysis of directive radiation from a line source in a metamaterial slab with low permittivity, IEEE Trans. Antennas Propag., 54, 3, 10171030 (2006).Google Scholar
Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., and Vincent, P., A metamaterial for directive emission, Phys. Rev. Lett., 89, 21, 213902 (2002).Google Scholar
Forati, E., Hanson, G. W., and Sievenpiper, D. F., an epsilon-near-zero total-internal-reflection metamaterial antenna, IEEE Trans. Antennas Propag., 63, 5, 19091916 (2015).Google Scholar
Memarian, M. and Eleftheriades, G., Dirac leaky-wave antennas for continuous beam scanning from photonic crystals. Nat. Commun., 6, 5855 (2015).CrossRefGoogle ScholarPubMed
Dorrah, A. H. and Eleftheriades, G. V., Pencil-beam single-point-fed Dirac leaky-wave antenna on a transmission-line grid, IEEE Antennas Wireless Propag. Lett., 16, 545548 (2017).CrossRefGoogle Scholar
Yang, J., Francescato, Y., Maier, S., Mao, F., and Huang, M., Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs, Opt. Express, 22, 8, 91079114 (2014).Google Scholar
Engheta, N., Papas, C., and Elachi, C., Radiation patterns of interfacial dipole antennas, Radio Sci., 17, 6, 15571566 (1982).Google Scholar
Mitra, D., Sarkhel, A., Kundu, O., and Chaudhuri, S. R. B., Design of compact and high directive slot antennas using grounded metamaterial slab, IEEE Antennas Wireless Propag. Lett., 14, 811814 (2015).Google Scholar
Dadgarpour, A., Sharifi Sorkherizi, M., and Kishk, A. A., High-efficient circularly polarized magnetoelectric dipole antenna for 5G applications using dual-polarized split-ring resonator lens, IEEE Trans. Antennas Propag., 65, 8, 4263–4267 (2017).Google Scholar
Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas, Optica, 3, 3, 339346 (2016).Google Scholar
A. Alù, M. G. Silveirinha, A. Salandrino, and Engheta, N., Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern, Phys. Rev. B, 75, 15, 155410 (2007).Google Scholar
Sun, L., Feng, S., and Yang, X., Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials, Appl. Phys. Lett., 101, 24, 241101 (2012).Google Scholar
Feng, S., Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials, Phys. Rev. Lett., 108, 19, 193904 (2012).Google Scholar
Wang, B. and Huang, K., Shaping the radiation pattern with MU and epsilon-near-zero metamaterials, Progress in Electromagnetics Research, 106, 107–119 (2010).Google Scholar
Navarro-Cía, M., Beruete, M., Campillo, I., and Sorolla, M., Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission, Phys. Rev. B, 83, 11, 115112 (2011).Google Scholar
Li, D., Szabo, Z., Qing, X., Li, E., and Chen, Z. N., A high gain antenna with an optimized metamaterial inspired superstrate, IEEE Trans. Antennas Propag., 60, 12, 60186023 (2012).Google Scholar
Ramaccia, D., Scattone, F., Bilotti, F., and Toscano, A., Broadband compact horn antennas by using EPS-ENZ metamaterial lens, IEEE Trans. Antennas Propag., 61, 6, 29292937 (2013).Google Scholar
Navarro-Cía, M., Beruete, M., Sorolla, M., and Engheta, N., Lensing system and Fourier transformation using epsilon-near-zero metamaterials, Phys. Rev. B, 86, 16, 165130 (2012).Google Scholar
Pacheco-Peña, V., Torres, V., Orazbayev, B. et al., Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna, Appl. Phys. Lett., 105, 24, 243503 (2014).Google Scholar
Soric, J. C. and Alù, A., Longitudinally independent matching and arbitrary wave patterning using ε-near-zero channels, IEEE Trans. Microw. Theory Techn., 63, 11, 35583567 (2015).Google Scholar
Soric, J. C. and Alù, A., Radiation patterning enabled by ε-near-zero reconfigurable metamaterial lenses, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 175–176 (2014).Google Scholar
Cheng, Q., Jiang, W., and Cui, T. J. , Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials, J. Phys. D: Appl. Phys., 43, 33, 335406 (2010).Google Scholar
Dadgarpour, A., Sorkherizi, M. S., Denidni, T. A., and Kishk, A. A., Passive beam switching and dual-beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter-waves, IEEE Trans. Antennas Propag., 65, 1, 92102 (2017).Google Scholar
Castaldi, G., Savoia, S., Galdi, V., Alù, A., and Engheta, N., Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs, Phys. Rev. B, 86, 11, 115123 (2012).Google Scholar
Pacheco-Peña, V., Engheta, N., Kuznetsov, S., Gentselev, A., and Beruete, M., Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies, Phys. Rev. Applied, 8, 3, 034036 (2017).CrossRefGoogle Scholar
Jin, Y., Xiao, S., Asger Mortensen, N., and He, S., Arbitrarily thin metamaterial structure for perfect absorption and giant magnification, Opt. Express, 19, 12, 1111411119 (2011).Google Scholar
Zhong, S., Ma, Y., and He, S., Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials, Appl. Phys. Lett., 105, 2, 023504 (2014).Google Scholar
Park, J., Kang, J. H., Liu, X., and Brongersma, M. L., Electrically tunable Epsilon-Near-Zero (ENZ) metafilm absorbers, Sci Rep., 5, 15754 (2015).Google Scholar
Kato, Y., Morita, S., Shiomi, H., and Sanada, A., Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling, IEEE Microw. Wireless Compon. Lett., 30, 4, 383386 (2020).Google Scholar
Anopchenko, A., Tao, L., Arndt, C., and Lee, H. W. H., Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness, ACS Photonic., 5, 7, 2631 (2018).Google Scholar
Powell, D. A., Alù, A., Edwards, B. et al., Nonlinear control of tunneling through an epsilon-near-zero channel, Phys. Rev. B, 79, 24, 245135(2009).Google Scholar
Vojnović, N., Jokanović, B., Mitrović, M., Mesa, F., and Medina, F., Tuning ZOR in ENZ waveguide using a single longitudinal slot and equivalent circuit parameter extraction, 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 283–285 (2014).Google Scholar
He, Y., Li, Y., Zhu, L. et al., Waveguide dispersion tailoring by using embedded impedance surfaces, Phys. Rev. Applied, 10, 6, 064024 (2018).Google Scholar
He, Y., Li, Y., Zhou, Z. et al., Wideband epsilon-near-zero supercoupling control through substrate-integrated impedance surface, Adv. Theory Simul., 2, 8, 1900059 (2019).Google Scholar
string-name>Alù, A. and Engheta, N., Dielectric sensing in ε-near-zero narrow waveguide channels, Phys. Rev. B, 78, 4, 045102 (2008).CrossRefGoogle Scholar
Lobato-Morales, H., Murthy, D. V. B., Corona-Chavez, A. et al., Permittivity measurements at microwave frequencies using Epsilon-Near-Zero (ENZ) tunnel structure, IEEE Trans. Microw. Theory Techn., 59, 7, 18631868 (2011).Google Scholar
Corona-Chavez, A., Murthy, D. V. B., and Olvera-Cervantes, J. L., Novel microwave filters based on epsilon near zero waveguide tunnels, Microw. Optical Technol. Lett., 53, 8, 17061710 (2011).Google Scholar
Radovanovic, M. and Jokanovic, B., Dual-band filter inspired by ENZ waveguide, IEEE Microw. Wireless Compon. Lett., 27, 6, 554556 (2017).Google Scholar
Zhou, Z., Li, Y., Nahvi, E. et al., Phys. Rev. Applied, 13, 3, 034005 (2020).Google Scholar
Wang, Y., Xu, P., and Qin, Y., Optical-phase demodulation using zero-index metamaterials, Opt. Lett., 40, 13, 31573160 (2015).Google Scholar
Liberal, I., and Engheta, N., Multiqubit subradiant states in N-port waveguide devices: ε-and-μ-near-zero hubs and nonreciprocal circulators, Phys. Rev. A, 97, 2, 022309 (2018).Google Scholar
Zhou, Z. and Li, Y., N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials, IEEE Trans. Microw. Theory Techn., 69, 3, 15291537 (2021).Google Scholar
Silveirinha, M., Trapping light in open plasmonic nanostructures, Phys. Rev. A, 89, 2, 023813(2014).Google Scholar
Liberal, I., and Engheta, N., Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities, Sci. Adv., 2, 10, e1600987 (2016).Google Scholar
Li, L., Zhang, J., Wang, C., Zheng, N., and H. Yin, Optical bound states in the continuum in a single slab with zero refractive index, Phys. Rev. A, 96, 1, 013801 (2017).Google Scholar
Lannebère, S., and Silveirinha, M., Optical meta-atom for localization of light with quantized energy, Nat Commun., 6, 8766 (2015).Google Scholar
Huang, J., Zhang, X., Zhang, L., and Zhang, J., General model of optical frequency conversion in homogeneous media: application to second-harmonic generation in an ε-near-zero waveguide, Phys. Rev. A, 96, 1, 013836 (2017).Google Scholar
Ciattoni, A., Rizza, C., and Palange, E., Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity, Phys. Rev. A, 81, 4, 043839 (2010).Google Scholar
Argyropoulos, C., Chen, P. Y., D’Aguanno, G., Engheta, N., and Alù, A., Boosting optical nonlinearities in ε-near-zero plasmonic channels, Phys. Rev. B, 85, 4, 045129 (2012).Google Scholar
Yang, Y., Lu, J., Manjavacas, A., et al. High-harmonic generation from an epsilon-near-zero material, Nat. Phys., 15, 10221026 (2019).Google Scholar
Capretti, A., Wang, Y., Engheta, N., and Negro, L., Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers, Opt. Lett., 40, 7, 15001503 (2015).Google Scholar
Vincenti, M. A., Kamandi, M., de Ceglia, D. et al., Second-harmonic generation in longitudinal epsilon-near-zero materials, Phys. Rev. B, 96, 4, 045438 (2017).Google Scholar
Alam, M. Z., De Leon, I., and Boyd, R. W., Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region, Science, 352, 6287, 795–797 (2016).Google Scholar
Kinsey, N., DeVault, C., Kim, J. et al., Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths, Optica, 2, 7, 616622 (2015).Google Scholar
Guo, Q., Cui, Y., Yao, Y. et al., A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium, Adv. Mater., 29, 27, 1700754 (2017).Google Scholar
Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., and Kuramochi, E., Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip, Opt. Lett., 30, 19, 25752577 (2005).Google Scholar
Belov, P. A., Marqués, R., Maslovski, S. I. et al., Strong spatial dispersion in wire media in the very large wavelength limit, Phys. Rev. B, 67, 11, 113103 (2003).Google Scholar
Engheta, N., From RF circuits to optical nanocircuits, IEEE Microw. Mag., 13, 4, 100113, May–June (2012).Google Scholar
Engheta, N., Taming light at the nanoscale, Phys. World, 13, 9, 3134 (2010).Google Scholar
Edwards, B. and Engheta, N., Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry, Phys. Rev. Lett., 108, 19, 193902 (2012).Google Scholar
Alù, A., Young, M. E., and Engheta, N., Design of nanofilters for optical nanocircuits, Phys. Rev. B, 77, 14, 144107 (2008).Google Scholar
Li, Y., Liberal, I., and Engheta, N., Dispersion synthesis with multi-ordered metatronic filters, Opt. Express, 25, 3, 19371948 (2017).Google Scholar
Li, Y. and Zhang, Z., Experimental verification of guided-wave lumped circuits using waveguide metamaterials, Phy. Rev. Appl., 9, 4, 044024 (2018).Google Scholar
Dominguez, O., Nordin, L., Lu, J. et al., Monochromatic multimode antennas on epsilon‐near‐zero materials, Adv. Opt. Mater., 7, 10, 1800826 (2019).Google Scholar
Chai, Z., Hu, X., Wang, F. et al., Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites, Laser Photonics Rev., 11, 5, 1700042 (2017).Google Scholar
Wu, Y., Hu, X., Wang, F. et al., Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range, Phys. Rev. Applied, 12, 5, 054021 (2019).Google Scholar
Feng, S., and Halterman, K., Coherent perfect absorption in epsilon-near-zero metamaterials, Phys. Rev. B, 86, 16, 165103 (2012).Google Scholar
Luo, J., Li, S., Hou, B., and Lai, Y., Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields, Phys. Rev. B, 90, 16, 165128 (2014).Google Scholar
Wang, D., Luo, J., Sun, Z., and Lai, Y., Transforming zero-index media into geometry-invariant coherent perfect absorbers via embedded conductive films, Opt. Express, 29, 4, 5247 (2021).Google Scholar
Feng, S., Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials, Phys. Rev. Lett., 108, 19, 193904 (2012).Google Scholar
Fedorov, V. Y., and Nakajima, T., All-angle collimation of incident light in mu-near-zero metamaterials, Opt. Express, 21, 23, 2778927795 (2013).Google Scholar
Alù, A. and Engheta, N., Boosting molecular fluorescence with a plasmonic nanolauncher. Phys. Rev. Lett., 103, 4, 043902 (2009).Google Scholar
Sokhoyan, R. and Atwater, H. A., Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide, Opt. Express, 21, 26, 3227932290 (2013).Google Scholar
Liberal, I. and Engheta, N., Zero-index structures as an alternative platform for quantum optics, PNAS, 114, 5, 822827 (2017).Google Scholar
Biehs, S.-A. and Agarwal, G. S., Qubit entanglement across ɛ-near-zero media, Phys. Rev. A, 96, 2, 022308 (2017)Google Scholar
Vertchenko, L., N. Akopian, and Lavrinenko, A. V., Epsilon-near-zero grids for on-chip quantum networks. Sci. Rep., 9, 6053 (2019)Google Scholar
Rodriguez-Fortuo, F. J., Vakil, A., and Engheta, N., Electric levitation using ɛ -near-zero metamaterials. Phys. Rev. Lett., 112, 3, 033902 (2014).Google Scholar
Liberal, I. and Engheta, N., Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies, PNAS, 115, 12, 28782883 (2018).Google Scholar
Liberal, I., Lobet, M., Li, Y., and Engheta, N., Near-zero-index media as electromagnetic ideal fluids, PNAS, 117, 39, 2405024054 (2020).Google Scholar
Chu, H. C., Li, Q., Liu, B. et al., A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials, Light: Science & Applications, 7, 50 (2018).Google Scholar
Sun, L., Gao, J., and Yang, X., Broadband epsilon-near-zero metamaterials with steplike metal–dielectric multilayer structures, Phys. Rev. B, 87, 16, 165134 (2013).Google Scholar
Sun, L., Yu, K. W., and Wang, G. P., Design anisotropic broadband ε-near-zero metamaterials: rigorous use of Bergman and Milton spectral representations, Phys. Rev. Applied, 9, 6, 064020 (2018).Google Scholar
Lucarini, V., Saarinen, J. J., Peiponen, K.-E., and Vartiainen, E. M., Kramers–Kronig relations in optical materials research (Springer, 2005).Google Scholar
Zangeneh-Nejad, F., Sounas, D. L., Alù, A. et al. Analogue computing with metamaterials. Nat. Rev. Mater., 6, 207225 (2021).Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Epsilon-Near-Zero Metamaterials
  • Yue Li, Tsinghua University, Beijing, Ziheng Zhou, Tsinghua University, Beijing, Yijing He, Tsinghua University, Beijing, Hao Li, Tsinghua University, Beijing
  • Online ISBN: 9781009128339
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Epsilon-Near-Zero Metamaterials
  • Yue Li, Tsinghua University, Beijing, Ziheng Zhou, Tsinghua University, Beijing, Yijing He, Tsinghua University, Beijing, Hao Li, Tsinghua University, Beijing
  • Online ISBN: 9781009128339
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Epsilon-Near-Zero Metamaterials
  • Yue Li, Tsinghua University, Beijing, Ziheng Zhou, Tsinghua University, Beijing, Yijing He, Tsinghua University, Beijing, Hao Li, Tsinghua University, Beijing
  • Online ISBN: 9781009128339
Available formats
×