Skip to main content Accessibility help
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-23T18:37:42.752Z Has data issue: false hasContentIssue false

Melanopsin Vision

Sensation and Perception Through Intrinsically Photosensitive Retinal Ganglion Cells

Published online by Cambridge University Press:  15 December 2022

Daniel S. Joyce
University of Nevada, Reno
Kevin W. Houser
Oregon State University
Stuart N. Peirson
University of Oxford
Jamie M. Zeitzer
Stanford University, California
Andrew J. Zele
Queensland University of Technology


Intrinsically photosensitive retinal ganglion cells (ipRGCs) are the most recently discovered photoreceptor class in the human retina. This Element integrates new knowledge and perspectives from visual neuroscience, psychology, sleep science and architecture to discuss how melanopsin-mediated ipRGC functions can be measured and their circuits manipulated. It reveals contemporary and emerging lighting technologies as powerful tools to set mind, brain and behaviour.
Get access
Online ISBN: 9781009029865
Publisher: Cambridge University Press
Print publication: 19 January 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adhikari, P., Feigl, B., and Zele, A. J. (2016a). ‘Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR)’. PLOS ONE 11(8): e0161175.CrossRefGoogle Scholar
Adhikari, P., Feigl, B., and Zele, A. J. (2019a). ‘The flicker pupil light response (fPLR)’. Translational Vision Science & Technology 8(5): 29.Google Scholar
Adhikari, P., Pearson, C. A., Anderson, A. M., Zele, A. J., and Feigl, B. (2015a). ‘Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR)’. Scientific Reports 5: 17610.Google Scholar
Adhikari, P., Zele, A. J., Cao, D., Kremers, J., and Feigl, B. (2019b). ‘The melanopsin-directed white noise electroretinogram (wnERG)’. Vision Research 164: 8393.CrossRefGoogle ScholarPubMed
Adhikari, P., Zele, A. J., and Feigl, B. (2015b). ‘The post-illumination pupil response (PIPR)’. Investigative Ophthalmology & Visual Science 56(6): 3838–49.Google ScholarPubMed
Adhikari, P., Zele, A. J., Thomas, R., and Feigl, B. (2016b). ‘Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma’. Scientific Reports 6: 33373.CrossRefGoogle ScholarPubMed
Aguilar, M., and Stiles, W. (1954). ‘Saturation of the rod mechanism of the retina at high levels of stimulation’. Journal of Modern Optics 1(1): 5965.Google Scholar
al Enezi, J., Revell, V., Brown, T. et al. (2011). ‘A “melanopic” spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights’. Journal of Biological Rhythms 26(4): 314–23.CrossRefGoogle Scholar
Alkozei, A., Smith, R., Pisner, D. A. et al. (2016). ‘Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task’. Sleep 39(9): 1671–80.CrossRefGoogle ScholarPubMed
Allen, A. E., Hazelhoff, E. M., Martial, F. P., Cajochen, C., and Lucas, R. J. (2018). ‘Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance’. Sleep 41(8): 115.Google Scholar
Allen, A. E., Martial, F., and Lucas, R. (2019a). ‘Applying the discovery of melanopsin photoreceptors in the human retina to enhancing the performance of visual displays’. Proceedings of SPIE 10942: Advances in Display Technologies IX 109420L.CrossRefGoogle Scholar
Allen, A. E., Martial, F. P., and Lucas, R. J. (2019b). ‘Form vision from melanopsin in humans’. Nature Communications 10(1): 2274.Google Scholar
Allen, A. E., Storchi, R., Martial, F. P. et al. (2014). ‘Melanopsin-driven light adaptation in mouse vision’. Current Biology 24(21): 2481–90.Google Scholar
Allen, A. E., Storchi, R., Martial, F. P., Bedford, R. A., and Lucas, R. J. (2017). ‘Melanopsin contributions to the representation of images in the early visual system’. Current Biology 27(11): 1623–32.Google Scholar
Altimus, C. M., Güler, A. D., Alam, N. M. et al. (2010). ‘Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities’. Nature Neuroscience 13(9): 1107–12.Google Scholar
Anderson, R. S., Zlatkova, M. B., and Demirel, S. (2002). ‘What limits detection and resolution of short-wavelength sinusoidal gratings across the retina?Vision Research 42(8): 981–90.Google Scholar
Aston-Jones, G. (2005). ‘Brain structures and receptors involved in alertness’. Sleep Medicine 6: S3S7.Google Scholar
Badia, P., Myers, B., Boecker, M., Culpepper, J., and Harsh, J. R. (1991). ‘Bright light effects on body temperature, alertness, EEG and behavior’. Physiology & Behavior 50(3): 583–8.Google Scholar
Bailes, H. J., and Lucas, R. J. (2013). ‘Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades’. Proceedings of the Royal Society B: Biological Sciences 280(1759): 20122987.CrossRefGoogle ScholarPubMed
Baraas, R. C., and Zele, A. J. (2016). ‘Psychophysical correlates of retinal processing’. Human Color Vision. Kremers, J., Baraas, R. C., and Marshall, N. J. (eds.), Springer, Cham: 133–58.Google Scholar
Barbur, J. L., Harlow, A. J., and Sahraie, A. (1992). ‘Pupillary responses to stimulus structure, colour and movement’. Ophthalmic and Physiological Optics 12(2): 137–41.Google Scholar
Barbur, J. L., Sahraie, A., Simmons, A., Weiskrantz, L., and Williams, S. C. R. (1998). ‘Residual processing of chromatic signals in the absence of a geniculostriate projection’. Vision Research 38(21): 3447–53.Google Scholar
Barlow, H. B., and Verrillo, R. T. (1976). ‘Brightness sensation in a Ganzfeld’. Vision Research 16(11): 1291–7.CrossRefGoogle Scholar
Barnard, A. R., Hattar, S., Hankins, M. W., and Lucas, R. J. (2006). ‘Melanopsin regulates visual processing in the mouse retina’. Current Biology 16(4): 389–95.Google Scholar
Barrionuevo, P. A., and Cao, D. (2014). ‘Contributions of rhodopsin, cone opsins, and melanopsin to postreceptoral pathways inferred from natural image statistics’. Journal of the Optical Society of America A 31(4): A131–9.Google Scholar
Barrionuevo, P. A., and Cao, D. (2016). ‘Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response’. Journal of Vision 16(11): 29.Google Scholar
Barrionuevo, P. A., McAnany, J. J., Zele, A. J., and Cao, D. (2018). ‘Non-linearities in the rod and cone photoreceptor inputs to the afferent pupil light response’. Frontiers in Neurology 9: 1140.Google Scholar
Barrionuevo, P. A., Nicandro, N., McAnany, J. J. et al. (2014). ‘Assessing rod, cone and melanopsin contributions to human pupil flicker responses’. Investigative Ophthalmology & Visual Science 55(2): 719–27.Google Scholar
Barrionuevo, P. A., Paz Filgueira, C., and Cao, D. (2022). ‘Is melanopsin activation affecting large field color-matching functions?’’ Journal of the Optical Society of America A 39(6): 1104–10.Google Scholar
Baver, S. B., Pickard, G. E., Sollars, P. J., and Pickard, G. E. (2008). ‘Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus’. European Journal of Neuroscience 27(7): 1763–70.Google Scholar
Bellingham, J., Chaurasia, S. S., Melyan, Z. et al. (2006). ‘Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates’. PLOS Biology 4(8): e254.CrossRefGoogle ScholarPubMed
Berson, D. M., Dunn, F. A., and Takao, M. (2002). ‘Phototransduction by retinal ganglion cells that set the circadian clock’. Science 295(5557): 1070–3.Google Scholar
Besenecker, U. C., and Bullough, J. D. (2016). ‘Investigating visual mechanisms underlying scene brightness’. Lighting Research & Technology 49(1): 1632.Google Scholar
Borbély, A. A. (1982). ‘A two process model of sleep regulation’. Human Neurobiology 1(3): 195204.Google Scholar
Borisuit, A., Linhart, F., Scartezzini, J. L., and Münch, M. (2015). ‘Effects of realistic office day lighting and electric lighting conditions on visual comfort, alertness and mood’. Lighting Research & Technology 47(2): 192209.CrossRefGoogle Scholar
Brown, T. M. (2020). ‘Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions’. Journal of Pineal Research 69(1): e12655.Google Scholar
Brown, T. M., Brainard, G. C., Cajochen, C. et al. (2022). ‘Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults’. PLOS Biology 20(3): e3001571.CrossRefGoogle ScholarPubMed
Brown, T. M., Thapan, K., Arendt, J., Revell, V. L., and Skene, D. J. (2021). ‘S-cone contribution to the acute melatonin suppression response in humans’. Journal of Pineal Research 71(1): e12719.Google Scholar
Brown, T. M., Tsujimura, S., Allen, A. E. et al. (2012). ‘Melanopsin-based brightness discrimination in mice and humans’. Current Biology 22(12): 1134–41.Google Scholar
Buck, S. (2003). ‘Rod–cone interactions in human vision’. The Visual Neurosciences. Chalupa, L. M. and Werner, J. S. (eds.), MIT Press, Cambridge, MA., vol. 1: 863–79.Google Scholar
Bullough, J. D. (2018). ‘Cone and melanopsin contributions to human brightness estimation: comment’. Journal of the Optical Society of America A 35(10): 1780–2.Google Scholar
Cajochen, C. (2007). ‘Alerting effects of light’. Sleep Medicine Reviews 11(6): 453–64.Google Scholar
Cajochen, C., Frey, S., Anders, D. et al. (2011). ‘Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance’. Journal of Applied Physiology 110(5): 1432–8.Google Scholar
Cajochen, C., Zeitzer, J. M., Czeisler, C. A., and Dijk, D.-J. (2000). ‘Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness’. Behavioural Brain Research 115(1): 7583.Google Scholar
Campbell, F. W., and Green, D. G. (1965). ‘Optical and retinal factors affecting visual resolution’. The Journal of Physiology 181(3): 576–93.Google Scholar
Cao, D., Chang, A., and Gai, S. (2018). ‘Evidence for an impact of melanopsin activation on unique white perception’. Journal of the Optical Society of America A 35(4): B287–91.Google Scholar
Cao, D., Nicandro, N., and Barrionuevo, P. A. (2015). ‘A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans’. Journal of Vision 15(1): 113.Google Scholar
Carle, C. F., James, A. C., Kolic, M., Loh, Y.-W., and Maddess, T. (2011). ‘High-resolution multifocal pupillographic objective perimetry in glaucoma’. Investigative Ophthalmology & Visual Science 52(1): 604–10.Google Scholar
Chang, A.-M., Santhi, N., St Hilaire, M. et al. (2012). ‘Human responses to bright light of different durations’. The Journal of Physiology 590(13): 3103–12.Google Scholar
Chang, A.-M., Scheer, F. A. J. L., and Czeisler, C. A. (2011). ‘The human circadian system adapts to prior photic history’. The Journal of Physiology 589(5): 1095–102.Google Scholar
Chartered Institution of Building Services Engineers (2018). SLL Lighting Handbook. Chartered Institution of Building Service Engineers, London.Google Scholar
Chellappa, S. L. (2020). ‘Individual differences in light sensitivity affect sleep and circadian rhythms’. Sleep 44(2): zsaa214.Google Scholar
Chellappa, S. L., Ly, J. Q. M., Meyer, C. et al. (2014). ‘Photic memory for executive brain responses’. PNAS 111(16): 6087–91.Google Scholar
Chellappa, S. L., Steiner, R., Blattner, P. et al. (2011). ‘Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert?’’ PLOS ONE 6(1): e16429.Google Scholar
Chellappa, S. L., Steiner, R., Oelhafen, P. et al. (2013). ‘Acute exposure to evening blue-enriched light impacts on human sleep’. Journal of Sleep Research 22(5): 573–80.Google Scholar
Chen, C.-C., Foley, J. M., and Brainard, D. H. (2000). ‘Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements’. Vision Research 40(7): 773–88.Google Scholar
Chen, S.-K., Badea, T. C., and Hattar, S. (2011). ‘Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs’. Nature 476(7358): 92–5.Google Scholar
Chougule, P. S., Najjar, R. P., Finkelstein, M. T., Kandiah, N., and Milea, D. (2019). ‘Light-induced pupillary responses in Alzheimer’s disease’. Frontiers in Neurology 10: 360.Google Scholar
Clarke, R. J., Zhang, H., and Gamlin, P. D. R. (2003). ‘Characteristics of the pupillary light reflex in the alert rhesus monkey’. Journal of Neurophysiology 89(6): 3179–89.Google Scholar
Cohen, J. (1964). ‘Dependency of the spectral reflectance curves of the Munsell color chips’. Psychonomic Science 1(1): 369–70.Google Scholar
Collison, F. T., Park, J. C., Fishman, G. A., McAnany, J. J., and Stone, E. M. (2015). ‘Full-field pupillary light responses, luminance thresholds, and light discomfort thresholds in CEP290 Leber congenital amaurosis patients’. Investigative Ophthalmology & Visual Science 56(12): 7130–6.Google Scholar
Commission Internationale de l’Éclairage (2018). CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light CIE DIS 026/E:2018. Commission Internationale de l’Éclairage, Vienna.Google Scholar
Commission Internationale de l’Éclairage (2019). Position Statement on Non-Visual Effects of Light: Recommending Proper Light at the Proper Time. Commission Internationale de l’Éclairage, Vienna.Google Scholar
Crasson, M., and Legros, J. J. (2005). ‘Absence of daytime 50 Hz, 100 microT(rms) magnetic field or bright light exposure effect on human performance and psychophysiological parameters’. Bioelectromagnetics 26(3): 225–33.Google Scholar
Crawford, B. H. (1936). ‘The dependence of pupil size upon external light stimulus under static and variable conditions’. Proceedings of the Royal Society B: Biological Sciences 121(823): 376–95.Google Scholar
Crook, J. D., Davenport, C. M., Peterson, B. B. et al. (2009). ‘Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina’. The Journal of Neuroscience 29(26): 8372–87.Google Scholar
Czeisler, C. A., Duffy, J. F., Shanahan, T. L. et al. (1999). ‘Stability, precision, and near-24-hour period of the human circadian pacemaker’. Science 284(5423): 2177–81.Google Scholar
Dacey, D. M., Liao, H.-W., Peterson, B. B. et al. (2005). ‘Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN’. Nature 433: 749–54.Google Scholar
Daguet, I., Bouhassira, D., and Gronfier, C. (2019). ‘Baseline pupil diameter is not a reliable biomarker of subjective sleepiness’. Frontiers in Neurology 10: 108.Google Scholar
Dai, J., van der Vliet, J., Swaab, D. F., and Buijs, R. M. (1998). ‘Human retinohypothalamic tract as revealed by in vitro postmortem tracing’. Journal of Comparative Neurology 397(3): 357–70.Google Scholar
Daneault, V., Hebert, M., Albouy, G. et al. (2014). ‘Aging reduces the stimulating effect of blue light on cognitive brain functions’. Sleep 37(1): 8596.Google Scholar
Daurat, A., Foret, J., Benoit, O., and Mauco, G. (2000). ‘Bright light during nighttime: effects on the circadian regulation of alertness and performance’. Biological Signals and Receptors 9(6): 309–18.Google Scholar
Davies, W. I., Tamai, T. K., Zheng, L. et al. (2015). ‘An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function’. Genome Research 25(11): 1666–79.Google Scholar
Davies, W. I., Zheng, L., Hughes, S. et al. (2011). ‘Functional diversity of melanopsins and their global expression in the teleost retina’. Cellular and Molecular Life Sciences 68(24): 4115–32.Google Scholar
de Lange, H. (1954). ‘Relationship between critical flicker-frequency and a set of low-frequency characteristics of the eye’. Journal of the Optical Society of America 44(5): 380–8.Google Scholar
de Zeeuw, J., Papakonstantinou, A., Nowozin, C. et al. (2019). ‘Living in biological darkness: objective sleepiness and the pupillary light responses are affected by different metameric lighting conditions during daytime’. Journal of Biological Rhythms 34(4): 410–31.Google Scholar
Deguchi, T. (1981). ‘Rhodopsin-like photosensitivity of isolated chicken pineal gland’. Nature 290: 706–7.Google Scholar
DeLawyer, T., Tsujimura, S., and Shinomori, K. (2020). ‘Relative contributions of melanopsin to brightness discrimination when hue and luminance also vary’. Journal of the Optical Society of America A 37(4): A81–8.Google Scholar
DeMarco, P., Pokorny, J., and Smith, V. C. (1992). ‘Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats’. Journal of the Optical Society of America A 9(9): 1465–76.Google Scholar
Deutsches Institut für Normung (2013). DIN SPEC 67600:2013-04: biologically effective illumination – design guidelines. Deutsches Institut für Normung, Berlin.Google Scholar
Dey, A., Zele, A. J., Feigl, B., and Adhikari, P. (2021). ‘Threshold vision under full-field stimulation: revisiting the minimum number of quanta necessary to evoke a visual sensation’. Vision Research 180: 110.Google Scholar
Dijk, D.-J., and Czeisler, C. A. (1994). ‘Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans’. Neuroscience Letters 166(1): 63–8.Google Scholar
Dilaura, D. L., Houser, K. W., Mistrick, R. G., Steffy, G. R (2011). The Lighting Handbook 10th Edition: Reference and Application. Illuminating Engineering Society, New York.Google Scholar
Do, M. T. H., Kang, S. H., Xue, T. et al. (2009). ‘Photon capture and signalling by melanopsin retinal ganglion cells’. Nature 457(7227): 281–7.Google Scholar
Dollins, A. B., Lynch, H. J., Wurtman, R. J., Deng, M. H., and Lieberman, H. R. (1993). ‘Effects of illumination on human nocturnal serum melatonin levels and performance’. Physiology & Behavior 53(1): 153–60.Google Scholar
Dumpala, S., Zele, A. J., and Feigl, B. (2019). ‘Outer retinal structure and function deficits contribute to circadian disruption in patients with type 2 diabetes’. Investigative Ophthalmology & Visual Science 60(6): 1870–8.Google Scholar
Eberhardt, L. V., Grön, G., Ulrich, M., Huckauf, A., and Strauch, C. (2021). ‘Direct voluntary control of pupil constriction and dilation: exploratory evidence from pupillometry, optometry, skin conductance, perception, and functional MRI’. International Journal of Psychophysiology 168: 3342.Google Scholar
Ecker, J. L., Dumitrescu, O. N., Wong, K. Y. et al. (2010). ‘Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision’. Neuron 67(1): 4960.Google Scholar
Emanuel, A. J., and Do, M. T. H. (2015). ‘Melanopsin tristability for sustained and broadband phototransduction’. Neuron 85(5): 1043–55.Google Scholar
Esquiva, G., Lax, P., Pérez-Santonja, J. J., García-Fernández, J. M., and Cuenca, N. (2017). ‘Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina’. Frontiers in Aging Neuroscience 9: 79.Google Scholar
Estevez, M. E., Fogerson, P. M., Ilardi, M. C. et al. (2012). ‘Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision’. The Journal of Neuroscience 32(39): 13608–20.Google Scholar
Estevez, O., and Spekreijse, H. (1982). ‘The “silent substitution” method in visual research’. Vision Research 22(6): 681–91.Google Scholar
Feigl, B., Carter, D.D., and Zele, A.J. (2022). Photoreceptor enhanced light therapy (PELT): A framework for implementing biologically directed integrative lighting, LEUKOS: 114.Google Scholar
Feigl, B., Mattes, D., Thomas, R., and Zele, A. J. (2011a). ‘Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma’. Investigative Ophthalmology & Visual Science 52(7): 4362–7.Google Scholar
Feigl, B., Ojha, G., Hides, L., and Zele, A. J. (2018). ‘Melanopsin-driven pupil response and light exposure in non-seasonal major depressive disorder’. Frontiers in Neurology 9: 764.Google Scholar
Feigl, B., and Zele, A. J. (2014). ‘Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease’. Optometry and Vision Science 91(8): 894903.Google Scholar
Feigl, B., Zele, A. J., Fader, S. M. et al. (2011b). ‘The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes’. Acta Ophthalmologica 90(3): e230–4.Google Scholar
Fernandez, D. C., Chang, Y.-T., Hattar, S., and Chen, S.-K. (2016). ‘Architecture of retinal projections to the central circadian pacemaker’. PNAS 113(21): 6047–52.Google Scholar
Fernandez, D. C., Fogerson, P. M., Ospri, L. Lazzerini et al. (2018). ‘Light affects mood and learning through distinct retina-brain pathways’. Cell 175(1): 71–84.e18.Google Scholar
Figueiro, M. G., Bierman, A., Plitnick, B., and Rea, M. S. (2009). ‘Preliminary evidence that both blue and red light can induce alertness at night’. BMC Neuroscience 10: 105.Google Scholar
Foster, R. G., Provencio, I., Hudson, D. et al. (1991). ‘Circadian photoreception in the retinally degenerate mouse (rd/rd)’. Journal of Comparative Physiology A 169(1): 3950.Google Scholar
Freedman, M. S., Lucas, R. J., Soni, B. et al. (1999). ‘Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors’. Science 284(5413): 502–4.Google Scholar
Gamlin, P. D. (2003). ‘Pupils’. Encyclopedia of the Neurological Sciences. Daroff, R. B. and Aminoff, M. J. (eds.), Elsevier Science, Burlington, MA: 92–3.Google Scholar
Gamlin, P. D. R., McDougal, D. H., Pokorny, J. et al. (2007). ‘Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells’. Vision Research 47(7): 946–54.Google Scholar
Gamlin, P. D. R., and Reiner, A. (1991). ‘The Edinger–Westphal nucleus: sources of input influencing accommodation, pupilloconstriction, and choroidal blood flow’. Journal of Comparative Neurology 306(3): 425–38.Google Scholar
Gamlin, P. D. R., Zhang, H., Harlow, A., and Barbur, J. L. (1998). ‘Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey’. Vision Research 38(21): 3353–8.Google Scholar
Gislén, A., Dacke, M., Kröger, R. H. H. et al. (2003). ‘Superior underwater vision in a human population of sea gypsies’. Current Biology 13(10): 833–6.Google Scholar
Gnyawali, S., Feigl, B., Adhikari, P., and Zele, A. J. (2022). ‘The role of melanopsin photoreception on visual attention linked pupil responses’. European Journal of Neuroscience 55(8): 19862002.Google Scholar
Gooley, J. J., Ho Mien, I., St Hilaire, M. A. et al. (2012). ‘Melanopsin and rod–cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans’. The Journal of Neuroscience 32(41): 14242–53.Google Scholar
Groos, G. A., and van der Kooy, D. (1981). ‘Functional absence of brain photoreceptors mediating entrainment of circadian rhythms in the adult rat’. Experientia 37(1): 71–2.Google Scholar
Grünert, U., Jusuf, P. R., Lee, S. C. S., and Nguyen, D. T. (2011). ‘Bipolar input to melanopsin containing ganglion cells in primate retina’. Visual Neuroscience 28(1): 3950.Google Scholar
Grünert, U., and Martin, P. R. (2021). ‘Morphology, molecular characterization, and connections of ganglion cells in primate retina’. Annual Review of Vision Science 7(1): 73103.Google Scholar
Guler, A. D., Ecker, J. L., Lall, G. S. et al. (2008). ‘Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision’. Nature 453(7191): 102–5.Google Scholar
Hankins, M. W., and Lucas, R. J. (2002). ‘The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment’. Current Biology 12(3): 191–8.Google Scholar
Hannibal, J., Christiansen, A. T., Heegaard, S., Fahrenkrug, J., and Kiilgaard, J. F. (2017). ‘Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity’. Journal of Comparative Neurology 525(8): 1934–61.Google Scholar
Hannibal, J., Kankipati, L., Strang, C. E. et al. (2014). ‘Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey’. Journal of Comparative Neurology 522(10): 2231–48.Google Scholar
Hathibelagal, A. R., Feigl, B., Kremers, J., and Zele, A. J. (2016). ‘Correlated and uncorrelated invisible temporal white noise alters mesopic rod signaling’. Journal of the Optical Society of America A 33(3): A93103.Google Scholar
Hattar, S., Kumar, M., Park, A. et al. (2006). ‘Central projections of melanopsin-expressing retinal ganglion cells in the mouse’. Journal of Comparative Neurology 497: 326–49.Google Scholar
Hattar, S., Liao, H.-W., Takao, M., Berson, D. M., and Yau, K.-W. (2002). ‘Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity’. Science 295(5557): 1065–70.Google Scholar
Hattar, S., Lucas, R. J., Mrosovsky, N. et al. (2003). ‘Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice’. Nature 424: 7581.Google Scholar
Hecht, S., Shlaer, S., and Pirenne, M. H. (1942). ‘Energy, quanta, and vision’. Journal of General Physiology 25(6): 819–40.Google Scholar
Hess, R. F., Sharpe, L. T., and Nordby, K. (eds.). (1990). Night Vision: Basic, Clinical and Applied Aspects. Cambridge University Press, Cambridge.Google Scholar
Hexley, A. C., Özgür Yöntem, A., Spitschan, M., Smithson, H. E., and Mantiuk, R. (2020). ‘Demonstrating a multi-primary high dynamic range display system for vision experiments’. Journal of the Optical Society of America A 37(4): A271–84.Google Scholar
Higuchi, S., Hida, A., Tsujimura, S. et al. (2013). ‘Melanopsin gene polymorphism I394T is associated with pupillary light responses in a dose-dependent manner’. PLOS ONE 8(3): e60310.Google Scholar
Hood, D. C. (1998). ‘Lower-level visual processing and models of light adaptation’. Annual Review of Psychology 49(1): 503–35.Google Scholar
Horiguchi, H., Winawer, J., Dougherty, R. F., and Wandell, B. A. (2013). ‘Human trichromacy revisited’. PNAS 110(3): E260–9.Google Scholar
Houser, K. W., Boyce, P. R., Zeitzer, J. M., and Herf, M. (2020). ‘Human-centric lighting: myth, magic or metaphor?Lighting Research & Technology 53(2): 97118.Google Scholar
Houser, K. W., and Esposito, T. (2021). ‘Human-centric lighting: foundational considerations and a five-step design process’. Frontiers in Neurology 12: 25.Google Scholar
Howarth, P. A., Bailey, I. L., Berman, S. M., Heron, G., and Greenhouse, D. S. (1991). ‘Location of nonlinear processes within the pupillarypathway’. Applied Optics 30(16): 2100–5.Google Scholar
Hu, C., Hill, D. D., and Wong, K. Y. (2013). ‘Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors’. Journal of Neurophysiology 109(7): 1876–89.Google Scholar
Hughes, S., Jagannath, A., Hankins, M. W., Foster, R. G., and Peirson, S. N. (2015). ‘Photic regulation of clock systems’. Methods in Enzymology 552: 125–43.Google Scholar
Hughes, S., Jagannath, A., Rodgers, J. et al. (2016). ‘Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells’. Eye 30: 247–54.Google Scholar
Huiberts, L. M., Smolders, K. C., and de Kort, Y. A. (2015). ‘Shining light on memory: effects of bright light on working memory performance’. Behavioural Brain Research 294: 234–45.Google Scholar
International WELL Building Institute (2021). Feature L03: Circadian Lighting Design. WELL Building Standard v2 Pilot Q2 2021 version. International WELL Building Institute. Scholar
Iskra-Golec, I., Marek, T., Fafrowicz, A., Zieba, A., and Honory, B. (2000). ‘Effects of bright light on performance and mood in morning and evening people’. Shiftwork in the 21st Century: Challenges for Research and Practice. Hornberger, S. (ed.), Peter Lang, Wiesensteig; Frankfurt am Main; New York: 131–5.Google Scholar
Jacobs, G. H., Neitz, M., Deegan, J. F., and Neitz, J. (1996). ‘Trichromatic colour vision in New World monkeys’. Nature 382(6587): 156–8.Google Scholar
Jagannath, A., Hughes, S., Abdelgany, A. et al. (2015). ‘Isoforms of melanopsin mediate different behavioral responses to light’. Current Biology 25(18): 2430–4.Google Scholar
Jewett, M. E., Kronauer, R. E., and Czeisler, C. A. (1994). ‘Phase-amplitude resetting of the human circadian pacemaker via bright light: a further analysis’. Journal of Biological Rhythms 9(3–4): 295314.Google Scholar
Johnson, C. H. (1990). An Atlas of Phase Response Curves for Circadian and Circatidal Rhythms. Department of Biology, Vanderbilt University, Nashville, TN.Google Scholar
Johnson, R. F., Moore, R. Y., and Morin, L. P. (1998). ‘Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract’. Brain Research 460(2): 293313.Google Scholar
Joo, H. R., Peterson, B. B., Dacey, D. M., Hattar, S., and Chen, S.-K. (2013). ‘Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells’. Visual Neuroscience 30(4): 175–82.Google Scholar
Joyce, D. S., Feigl, B., Cao, D., and Zele, A. J. (2015). ‘Temporal characteristics of melanopsin inputs to the human pupil light reflex’. Vision Research 107: 5866.Google Scholar
Joyce, D. S., Feigl, B., Kerr, G., Roeder, L., and Zele, A. J. (2018). ‘Melanopsin-mediated pupil function is impaired in Parkinson’s disease’. Scientific Reports 8(7796): 19.Google Scholar
Joyce, D. S., Feigl, B., and Zele, A. J. (2016a). ‘The effects of short-term light adaptation on the human post-illumination pupil response’. Investigative Ophthalmology & Visual Science 57(13): 5672–80.Google Scholar
Joyce, D. S., Feigl, B., and Zele, A. J. (2016b). ‘Melanopsin-mediated post-illumination pupil response in the peripheral retina’. Journal of Vision 16(8): 115.Google Scholar
Jusuf, P. R., Lee, S. C., Hannibal, J., and Grunert, U. (2007). ‘Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina’. European Journal of Neuroscience 26(10): 2906–21.Google Scholar
Kankipati, L., Girkin, C. A., and Gamlin, P. D. (2011). ‘The post-illumination pupil response is reduced in glaucoma patients’. Investigative Ophthalmology & Visual Science 52(5): 2287–92.Google Scholar
Kardon, R., Anderson, S. C., Damarjian, T. G. et al. (2009). ‘Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex’. Ophthalmology 116(8): 1564–73.Google Scholar
Kawasaki, A., Herbst, K., Sander, B., and Milea, D. (2010). ‘Selective wavelength pupillometry in Leber hereditary optic neuropathy’. Clinical & Experimental Ophthalmology 38(3): 322–4.Google Scholar
Kawasaki, A., and Kardon, R. H. (2007). ‘Intrinsically photosensitive retinal ganglion cells’. Journal of Neuro-Ophthalmology 27(3): 195204.Google Scholar
Keeler, C. E. (1927). ‘Iris movements in blind mice’. American Journal of Physiology 81(1): 107–12.Google Scholar
Keeler, C. E., Sutcliffe, E., and Chaffee, E. L. (1928). ‘Normal and “rodless” retinae of the house mouse with respect to the electromotive force generated through stimulation by light’. PNAS 14(6): 477–84.Google Scholar
Kelbsch, C., Lange, J., Wilhelm, H. et al. (2020). ‘Chromatic pupil campimetry reveals functional defects in exudative age-related macular degeneration with differences related to disease activity’. Translational Vision Science & Technology 9(6): 5.Google Scholar
Kelbsch, C., Strasser, T., Chen, Y. et al. (2019). ‘Standards in pupillography’. Frontiers in Neurology 10: 129.Google Scholar
Kelly, D. H. (1961). ‘Flicker fusion and harmonic analysis’. Journal of the Optical Society of America 51(8): 917–18.Google Scholar
Khalsa, S. B. S., Jewett, M. E., Cajochen, C., and Czeisler, C. A. (2003). ‘A phase-response curve to single bright light pulses in human subjects’. Journal of Physiology 54 9(pt. 3): 945–52.Google Scholar
König, A., and Dieterici, C. (1893). ‘Die Grünempfindungen in normalen und anomalen Farbensystemen und ihre Intensitäts-Verteilung im Spektrum’.Zeitschrift für Psychologie und Physiologie der Sinnesorgane 4: 241347.Google Scholar
Kuffler, S. W. (1953). ‘Discharge patterns and functional organization of mammalian retina’. Journal of Neurophysiology 16(1): 3768.Google Scholar
La Morgia, C., Carelli, V., and Carbonelli, M. (2018). ‘Melanopsin retinal ganglion cells and pupil: clinical implications for neuro-ophthalmology’. Frontiers in Neurology 9: 1047.Google Scholar
Lall, G. S., Revell, V. L., Momiji, H. et al. (2010). ‘Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance’. Neuron 66(3): 417–28.Google Scholar
Laurenzo, S. A., Kardon, R., Ledolter, J. et al. (2016). ‘Pupillary response abnormalities in depressive disorders’. Psychiatry Research 246: 492–9.Google Scholar
Lavoie, S., Paquet, J., Selmaoui, B., Rufiange, M., and Dumont, M. (2003). ‘Vigilance levels during and after bright light exposure in the first half of the night’. Chronobiology International 20(6): 1019–38.Google Scholar
Lee, B. B., Smith, V. C., Pokorny, J., and Kremers, J. (1997). ‘Rod inputs to macaque ganglion cells’. Vision Research 37(20): 2813–28.Google Scholar
Lee, S.-i., Hida, A., Tsujimura, S. et al. (2013). ‘Association between melanopsin gene polymorphism (I394 T) and pupillary light reflex is dependent on light wavelength’. Journal of Physiological Anthropology 32(1): 16.Google Scholar
Lee, S. C. S., Jusuf, P. R., and Grünert, U. (2004). ‘S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina’. Journal of Comparative Neurology 474(3): 353–63.Google Scholar
Lee, S. I., Hida, A., Kitamura, S., Mishima, K., and Higuchi, S. (2014). ‘Association between the melanopsin gene polymorphism OPN4*Ile394Thr and sleep/wake timing in Japanese university students’. Journal of Physiological Anthropology 33: 9.Google Scholar
LeGates, T. A., Fernandez, D. C., and Hattar, S. (2014). ‘Light as a central modulator of circadian rhythms, sleep and affect’. Nature Reviews: Neuroscience 15: 443.Google Scholar
Lennie, P., Pokorny, J., and Smith, V. C. (1993). ‘Luminance’. Journal of the Optical Society of America A 10(6): 1283–93.Google Scholar
Leproult, R., van Reeth, O., Byrne, M. M., Sturis, J., and Van Cauter, E. (1997). ‘Sleepiness, performance, and neuroendocrine function during sleep deprivation: effects of exposure to bright light or exercise’. Journal of Biological Rhythms 12(3): 245–58.Google Scholar
Liao, H.-W., Ren, X., Peterson, B. B. et al. (2016). ‘Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations’. Journal of Comparative Neurology 524(14): 2845–72.Google Scholar
Lockley, S. W., Evans, E. E., Scheer, F. A. et al. (2006). ‘Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans’. Sleep 29(2): 161–8.Google Scholar
Lok, R., Joyce, D. S., and Zeitzer, J. M. (2022). ‘Impact of daytime spectral tuning on cognitive function’. Journal of Photochemistry and Photobiology B: Biology 230: 112439.Google Scholar
Lowenstein, O., and Loewenfeld, I. E. (1969). ‘The Pupil’. The Eye. Davson, H. (ed.), Academic Press, New York: 255337.Google Scholar
Lucas, R. J., Douglas, R. H., and Foster, R. G. (2001). ‘Characterization of an ocular photopigment capable of driving pupillary constriction in mice’. Nature Neuroscience 4(6): 621–6.Google Scholar
Lucas, R. J., Hattar, S., Takao, M. et al. (2003). ‘Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice’. Science 299(5604): 245–7.Google Scholar
Lucas, R. J., Peirson, S. N., Berson, D. M. et al. (2014). ‘Measuring and using light in the melanopsin age’. Trends in Neurosciences 37(1): 19.Google Scholar
Lüdtke, H., Wilhelm, B., Adler, M., Schaeffel, F., and Wilhelm, H. (1998). ‘Mathematical procedures in data recording and processing of pupillary fatigue waves’. Vision Research 38(19): 2889–96.Google Scholar
MacLeod, D. I. A. (1978). ‘Visual sensitivity’. Annual Review of Psychology 29(1): 613–45.Google Scholar
Makous, W. (2003). ‘Scotopic vision’. The Visual Neurosciences. Chalupa, L. M. and Werner, J. S. (eds.), MIT Press, Cambridge, MA, vol. 1: 838–50.Google Scholar
Maloney, L. T. (1986). ‘Evaluation of linear models of surface spectral reflectance with small numbers of parameters’. Journal of the Optical Society of America A 3(10): 1673–83.Google Scholar
Mansfield, R. J. W. (1976). ‘Visual adaptation: retinal transduction, brightness and sensitivity’. Vision Research 16(7): 679–90.Google Scholar
Markwell, E. L., Feigl, B., and Zele, A. J. (2010). ‘Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm’. Clinical and Experimental Optometry 93(3): 137–49.Google Scholar
Masri, R. A., Percival, K. A., Koizumi, A., Martin, P. R., and Grunert, U. (2019). ‘Survey of retinal ganglion cell morphology in marmoset’. Journal of Comparative Neurology 527(1): 236–58.Google Scholar
Maxwell, J. C. (1855). ‘Experiments on colour, as perceived by the eye, with remarks on colour-blindness’. Transactions of the Royal Society of Edinburgh 21: 275–98.Google Scholar
Maynard, M. L., Zele, A. J., and Feigl, B. (2015). ‘Melanopsin-mediated post-illumination pupil response in early age-related macular degeneration’. Investigative Ophthalmology & Visual Science 56(11): 6906–13.Google Scholar
Maynard, M. L., Zele, A. J., Kwan, A. S., and Feigl, B. (2017). ‘Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age-related Macular Degeneration’. Investigative Ophthalmology & Visual Science 58(2): 990–6.Google Scholar
McDougal, D. H., and Gamlin, P. D. (2010). ‘The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex’. Vision Research 50(1): 7287.Google Scholar
Metha, A. B., and Lennie, P. (2001). ‘Transmission of spatial information in S-cone pathways’. Visual Neuroscience 18(6): 961–72.Google Scholar
Milner, E. S., and Do, M. T. H. (2017). ‘A population representation of absolute light intensity in the mammalian retina’. Cell 171(4): 865–76.e816.Google Scholar
Milosavljevic, N., Storchi, R., Eleftheriou, C. G. et al. (2018). ‘Photoreceptive retinal ganglion cells control the information rate of the optic nerve’. PNAS 115(50): E11817–26.Google Scholar
Mistlberger, R. E., and Rusak, B. (2005). ‘Circadian Rhythms in Mammals: Formal Properties and Environmental Influences’. Principles and Practice of Sleep Medicine. Kryger, M. H., Roth, T., and Dement, W. C. (eds.), Elsevier, Philadelphia. 321334.Google Scholar
Mollon, J. D., Bosten, J. M., Peterzell, D. H., and Webster, M. A. (2017). ‘Individual differences in visual science: what can be learned and what is good experimental practice?Vision Research 141: 415.Google Scholar
Moore, R. Y. (1995). ‘Organization of the Mammalian Circadian System’. Circadian Clocks and Their Adjustment. John Wiley and Sons, Chichester. Ciba Foundation Symposium 183: 88106.Google Scholar
Moore, R. Y., and Lenn, N. J. (1972). ‘A retinohypothalamic projection in the rat’. Journal of Comparative Neurology 146(1): 19.Google Scholar
Moore, R. Y., Speh, J. C., and Card, J. P. (1995). ‘The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells’. Journal of Comparative Neurology 352: 351–66.Google Scholar
Moura, A. L. A., Nagy, B. V., La Morgia, C. et al. (2013). ‘The pupil light reflex in Leber’s hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells’. Investigative Ophthalmology & Visual Science 54(7): 4471–7.Google Scholar
Münch, M., Kobialka, S., Steiner, R. et al. (2006). ‘Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men’. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 290(5): R1421–8.Google Scholar
Münch, M., Léon, L., Crippa, S. V., and Kawasaki, A. (2012). ‘Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses’. Investigative Ophthalmology & Visual Science 53(8): 4546–55.Google Scholar
Munteanu, T., Noronha, K. J., Leung, A. C. et al. (2018). ‘Light-dependent pathways for dopaminergic amacrine cell development and function’. eLife 7: e39866.Google Scholar
Mure, L. S. (2021). ‘Intrinsically photosensitive retinal ganglion cells of the human retina’. Frontiers in Neurology 12: 636330.Google Scholar
Mure, L. S., Vinberg, F., Hanneken, A., and Panda, S. (2019). ‘Functional diversity of human intrinsically photosensitive retinal ganglion cells’. Science 366(6470): 1251–5.Google Scholar
Murray, I. J., Kremers, J., McKeefry, D., and Parry, N. R. A. (2018). ‘Paradoxical pupil responses to isolated M-cone increments’. Journal of the Optical Society of America A 35(4): B6671.Google Scholar
Nagel, W. (1924). ‘Adaptation, Twilight Vision and the Duplicity Theory’. Helmholtz’s Treatise on Physiological Optics, translated from the third German edition. Optical Society of America, Rochester, NY, vol. 1.Google Scholar
Najjar, R. P., and Zeitzer, J. M. (2016). ‘Temporal integration of light flashes by the human circadian system’. Journal of Clinical Investigation 126(3): 938–47.Google Scholar
Nasir-Ahmad, S., Lee, S. C. S., Martin, P. R., and Grünert, U. (2017). ‘Melanopsin-expressing ganglion cells in human retina: morphology, distribution, and synaptic connections’. Journal of Comparative Neurology 527: 116.Google Scholar
Nathans, J., Piantanida, T., Eddy, R., Shows, T., and Hogness, D. (1986). ‘Molecular genetics of inherited variation in human color vision’. Science 232(4747): 203–10.Google Scholar
Nelson, R. J., and Zucker, I. (1981). ‘Photoperiodic control of reproduction in olfactory-bulbectomized rats’. Neuroendocrinology 32(5): 266–71.Google Scholar
Newkirk, G. S., Hoon, M., Wong, R. O., and Detwiler, P. B. (2013). ‘Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina’. Journal of Neurophysiology 110(2): 536–52.Google Scholar
O’Brien, P. M., and O’Connor, P. J. (2000). ‘Effect of bright light on cycling performance’. Medicine & Science in Sports & Exercise 32(2): 439–47.Google Scholar
Okamoto, Y., Rea, M. S., and Figueiro, M. G. (2014). ‘Temporal dynamics of EEG activity during short- and long-wavelength light exposures in the early morning’. BMC Research Notes 7: 113.Google Scholar
Oken, B. S., Salinsky, M. C., and Elsas, S. M. (2006). ‘Vigilance, alertness, or sustained attention: physiological basis and measurement’. Clinical Neurophysiology 117(9): 1885–901.Google Scholar
Ortuño-Lizarán, I., Esquiva, G., Beach, T. G. et al. (2018). ‘Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson’s disease’. Acta Neuropathologica Communications 6(1): 90.Google Scholar
Ostrin, L. A. (2018). ‘The ipRGC-driven pupil response with light exposure and refractive error in children’. Ophthalmic and Physiological Optics 38(5): 503–15.Google Scholar
Ostrin, L. A., Strang, C. E., Chang, K. et al. (2018). ‘Immunotoxin-induced ablation of the intrinsically photosensitive retinal ganglion cells in rhesus monkeys’. Frontiers in Neurology 9: 1000.Google Scholar
Panda, S., Sato, T. K., Castrucci, A. M. et al. (2002). ‘Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting’. Science 298(5601): 2213–16.Google Scholar
Pant, M., Zele, A. J., Feigl, B., and Adhikari, P. (2021). ‘Light adaptation characteristics of melanopsin’. Vision Research 188: 126–38.Google Scholar
Park, J. C., Chen, Y.-F., Blair, N. P. et al. (2017). ‘Pupillary responses in non-proliferative diabetic retinopathy’. Scientific Reports 7(1): 44987.Google Scholar
Park, J. C., and McAnany, J. J. (2015). ‘Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex’. Journal of Vision 15(3): 1–13.Google Scholar
Park, J. C., Moura, A. L., Raza, A. S. et al. (2011). ‘Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response’. Investigative Ophthalmology & Visual Science 52(9): 6624–35.Google Scholar
Patterson, S. S., Kuchenbecker, J. A., Anderson, J. R., Neitz, M., and Neitz, J. (2020). ‘A color vision circuit for non-image-forming vision in the primate retina’. Current Biology 30(7): 1269–74.e1262.Google Scholar
Peirson, S. N., Thompson, S., Hankins, M. W., and Foster, R. G. (2005). ‘Mammalian photoentrainment: results, methods, and approaches’. Methods in Enzymology 393: 697726.Google Scholar
Perrin, F., Peigneux, P., Fuchs, S. et al. (2004). ‘Nonvisual responses to light exposure in the human brain during the circadian night’. Current Biology 14(20): 1842–6.Google Scholar
Phillips, A. J. K., Vidafar, P., Burns, A. C. et al. (2019). ‘High sensitivity and interindividual variability in the response of the human circadian system to evening light’. PNAS 116(24): 12019–24.Google Scholar
Phipps-Nelson, J., Redman, J. R., Dijk, D.-J., and Rajaratnam, S. M. W. (2003). ‘Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance’. Sleep 26(6): 695700.Google Scholar
Phipps-Nelson, J., Redman, J. R., Schlangen, L. J., and Rajaratnam, S. M. (2009). ‘Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing’. Chronobiology International 26(5): 891912.Google Scholar
Pickard, G. E. (1980). ‘Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: a horseradish peroxidase study’. Brain Research 183(2): 458–65.Google Scholar
Pierson, R. J., and Carpenter, M. B. (1974). ‘Anatomical analysis of pupillary reflex pathways in the rhesus monkey’. Journal of Comparative Neurology 158(2): 121–43.Google Scholar
Pires, S. S., Hughes, S., Turton, M. et al. (2009). ‘Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina’. The Journal of Neuroscience 29(39): 12332–42.Google Scholar
Pokorny, J., Lutze, M., Cao, D., and Zele, A. J. (2006). ‘The color of night: surface color perception under dim illuminations’. Visual Neuroscience 23(3/4): 525–30.Google Scholar
Pokorny, J., Smithson, H., and Quinlan, J. (2004). ‘Photostimulator allowing independent control of rods and the three cone types’. Visual Neuroscience 21(3): 263–7.Google Scholar
Pottackal, J., Walsh, H. L., Rahmani, P. et al. (2021). ‘Photoreceptive ganglion cells drive circuits for local inhibition in the mouse retina’. Journal of Neuroscience 41(7): 1489–504.Google Scholar
Prigge, C. L., Yeh, P. T., Liou, N. F. et al. (2016). ‘M1 ipRGCs influence visual function through retrograde signaling in the retina’. Journal of Neuroscience 36(27): 7184–97.Google Scholar
Provencio, I., Cooper, H. M., and Foster, R. G. (1998a). ‘Retinal projections in mice with inherited degeneration: implications for circadian photoentrainment’. Journal of Comparative Neurology 395(4): 417–39.Google Scholar
Provencio, I., and Foster, R. G. (1995). ‘Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics’. Brain Research 694(1–2): 183–90.Google Scholar
Provencio, I., Jiang, G., de Grip, W. J., Hayes, W. P., and Rollag, M. D. (1998b). ‘Melanopsin: an opsin in melanophores, brain, and eye’. PNAS 95(1): 340–5.Google Scholar
Provencio, I., Rodriguez, I. R., Jiang, G. et al. (2000). ‘A novel human opsin in the inner retina’. Journal of Neuroscience 20(2): 600–5.Google Scholar
Provencio, I., Rollag, M. D., and Castrucci, A. M. (2002). ‘Photoreceptive net in the mammalian retina: this mesh of cells may explain how some blind mice can still tell day from night’. Nature 415(6871): 493.Google Scholar
Purkyně, J. E. (1823). Beobachtungen und Versuche zur Physiologie der Sinne. In Commission der JG Calve’schen Buchhandlung, Prague.Google Scholar
Quattrochi, L. E., Stabio, M. E., Kim, I. et al. (2019). ‘The M6 cell: a small-field bistratified photosensitive retinal ganglion cell’. Journal of Comparative Neurology 527(1): 297311.Google Scholar
Rahman, S. A., Flynn-Evans, E. E., Aeschbach, D. et al. (2014). ‘Diurnal spectral sensitivity of the acute alerting effects of light’. Sleep 37(2): 271–81.Google Scholar
Rahman, S. A., Marcu, S., Shapiro, C. M., Brown, T. J., and Casper, R. F. (2011). ‘Spectral modulation attenuates molecular, endocrine, and neurobehavioral disruption induced by nocturnal light exposure’. American Journal of Physiology: Endocrinology and Metabolism 300(3): E518–27.Google Scholar
Rahman, S. A., Shapiro, C. M., Wang, F. et al. (2013). ‘Effects of filtering visual short wavelengths during nocturnal shiftwork on sleep and performance’. Chronobiology International 30(8): 951–62.Google Scholar
Rahman, S. A., St Hilaire, M. A., Chang, A. M. et al. (2017a). ‘Circadian phase resetting by a single short-duration light exposure’. JCI Insight 2(7): e89494.Google Scholar
Rahman, S. A., St Hilaire, M. A., and Lockley, S. W. (2017b). ‘The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep’. Physiology & Behavior 177: 221–9.Google Scholar
Reeves, A. (2003). ‘Visual Adaptation’. The Visual Neurosciences. Chalupa, L. M. and Werner, J. S. (eds.), MIT Press, Cambridge, MA, vol. 1: 851–62.Google Scholar
Reifler, A. N., Chervenak, A. P., Dolikian, M. E. et al. (2015). ‘All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells’. Current Biology 25(21): 2763–73.Google Scholar
Ricketts, E., Joyce, D. S., Rissman, A. J. et al. (2022). ‘Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health’. Sleep Medicine Reviews 64: 110.Google Scholar
Rimmer, D. W., Boivin, D. B., Shanahan, T. L. et al. (2000). ‘Dynamic resetting of the human circadian pacemaker by intermittent bright light’. American Journal of Physiology 279: R1574–9.Google Scholar
Rodgers, J., Hughes, S., Pothecary, C. A. et al. (2018a). ‘Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue’. Human Molecular Genetics 27(15): 2589–603.Google Scholar
Rodgers, J., Peirson, S. N., Hughes, S., and Hankins, M. W. (2018b). ‘Functional characterisation of naturally occurring mutations in human melanopsin’. Cellular and Molecular Life Sciences 75(19): 3609–24.Google Scholar
Roecklein, K., Wong, P., Ernecoff, N. et al. (2013). ‘The post illumination pupil response is reduced in seasonal affective disorder’. Psychiatry Research 210(1): 150–8.Google Scholar
Roecklein, K. A., Rohan, K. J., Duncan, W. C. et al. (2009). ‘A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder’. Journal of Affective Disorders 114(1–3): 279–85.Google Scholar
Roecklein, K. A., Wong, P. M., Franzen, P. L. et al. (2012). ‘Melanopsin gene variations interact with season to predict sleep onset and chronotype’. Chronobiology International 29(8): 1036–47.Google Scholar
Roenneberg, T., and Foster, R. G. (1997). ‘Twilight times: light and the circadian system’. Photochemistry and Photobiology 66(5): 549–61.Google Scholar
Ruby, N. F., Brennan, T. J., Xie, X. et al. (2002). ‘Role of melanopsin in circadian responses to light’. Science 298(5601): 2211–13.Google Scholar
Rukmini, A. V., Chew, M. C., Finkelstein, M. T. et al. (2019a). ‘Effects of low and moderate refractive errors on chromatic pupillometry’. Scientific Reports 9(1): 4945.Google Scholar
Rukmini, A. V., Milea, D., and Gooley, J. J. (2019b). ‘Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases’. Frontiers in Neurology 10: 76.Google Scholar
Rushton, W. A. H. (1972). ‘Review lecture: pigments and signals in colour vision’. Journal of Physiology 220(3): 131.Google Scholar
Sadun, A. A., Schaechter, J. D., and Smith, L. E. H. (1984). ‘A retinohypothalamic pathway in man: light mediation of circadian rhythms’. Brain Research 302: 371–7.Google Scholar
Sahin, L., and Figueiro, M. G. (2013). ‘Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon’. Physiology & Behavior 11617: 17.Google Scholar
Sahin, L., Wood, B. M., Plitnick, B., and Figueiro, M. G. (2014). ‘Daytime light exposure: effects on biomarkers, measures of alertness, and performance’. Behavioural Brain Research 274: 176–85.Google Scholar
Sand, A., Schmidt, T. M., and Kofuji, P. (2012). ‘Diverse types of ganglion cell photoreceptors in the mammalian retina’. Progress in Retinal and Eye Research 31(4): 287302.Google Scholar
Sanes, J. R., and Masland, R. H. (2015). ‘The types of retinal ganglion cells: current status and implications for neuronal classification’. Annual Review of Neuroscience 38(1): 221–46.Google Scholar
Schmidt, T. M., Alam, N. M., Chen, S. et al. (2014). ‘A role for melanopsin in alpha retinal ganglion cells and contrast detection’. Neuron 82(4): 781–8.Google Scholar
Schmidt, T. M., Chen, S. K., and Hattar, S. (2011). ‘Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions’. Trents in Neurosciences 34(11): 572–80.Google Scholar
Schmidt, T. M., and Kofuji, P. (2009). ‘Functional and morphological differences among intrinsically photosensitive retinal ganglion cells’. Journal of Neuroscience 29(2): 476–82.Google Scholar
Schoonderwoerd, R. A., de Rover, M., Janse, J. A. M. et al. (2022). ‘The photobiology of the human circadian clock’. PNAS 119(13): e2118803119.Google Scholar
Schrödinger, E. (1925). ‘On the relation of the four colors to the three color theory’. Meeting reports. Department 2a, Mathematics, Astronomy, Physics, Meteorology and Mechanics, Academy of Sciences in Vienna, Mathematical and Natural Science Class 134: 471.Google Scholar
Sekaran, S., Foster, R. G., Lucas, R. J., and Hankins, M. W. (2003). ‘Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons’. Current Biology 13(15): 1290–8.Google Scholar
Sexton, T. J., Golczak, M., Palczewski, K., and van Gelder, R. N. (2012). ‘Melanopsin is highly resistant to light and chemical bleaching in vivo’. Journal of Biological Chemistry 287(25): 20888–97.Google Scholar
Shapiro, A. G., Pokorny, J., and Smith, V. C. (1996). ‘Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra’. Journal of the Optical Society of America A 13(12): 2319–28.Google Scholar
Shapiro, C. M., Auch, C., Reimer, M. et al. (2006). ‘A new approach to the construct of alertness’. Journal of Psychosomatic Research 60(6): 595603.Google Scholar
Shapley, R., and Enroth-Cugell, C. (1984). ‘Visual adaptation and retinal gain controls’. Progress in Retinal Research 3: 263346.Google Scholar
Shevell, S. K., and Kingdom, F. A. A. (2007). ‘Color in complex scenes’. Annual Review of Psychology 59(1): 143–66.Google Scholar
Smith, V. C., Pokorny, J., Lee, B. B., and Dacey, D. M. (2008). ‘Sequential processing in vision: the interaction of sensitivity regulation and temporal dynamics’. Vision Research 48(26): 2649–56.Google Scholar
Smolders, K. C., and de Kort, Y. A. (2014). ‘Bright light and mental fatigue: effects on alertness, vitality, performance and physiological arousal’. Journal of Environmental Psychology 39: 7791.Google Scholar
Smolders, K. C., de Kort, Y. A., and Cluitmans, P. J. (2012). ‘A higher illuminance induces alertness even during office hours: findings on subjective measures, task performance and heart rate measures’. Physiology & Behavior 107(1): 716.Google Scholar
Souman, J. L., Borra, T., de Goijer, I. et al. (2018). ‘Spectral tuning of white light allows for strong reduction in melatonin suppression without changing illumination level or color temperature’. Journal of Biological Rhythms 33(4): 420–31.Google Scholar
Souman, J. L., Tinga, A. M., Te Pas, S. F., van Ee, R., and Vlaskamp, B. N. S. (2017). ‘Acute alerting effects of light: a systematic literature review’. Behavioural Brain Research 337: 228–39.Google Scholar
Spitschan, M., Aguirre, G. K., and Brainard, D. H. (2015). ‘Selective stimulation of penumbral cones reveals perception in the shadow of retinal blood vessels’. PLOS ONE 10(4): e0124328.Google Scholar
Spitschan, M., Bock, A. S., Ryan, J. et al. (2017). ‘The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience’. PNAS 114(46): 12291–6.Google Scholar
Spitschan, M., Jain, S., Brainard, D. H., and Aguirre, G. K. (2014). ‘Opponent melanopsin and S-cone signals in the human pupillary light response’. PNAS 111(43): 15568–72.Google Scholar
Spitschan, M., Lazar, R., Yetik, E., and Cajochen, C. (2019). ‘No evidence for an S cone contribution to acute neuroendocrine and alerting responses to light’. Current Biology 29(24): R1297–8.Google Scholar
St Hilaire, M. A., Gooley, J. J., Khalsa, S. B. S. et al. (2012). ‘Human phase response curve to a 1 h pulse of bright white light’. Journal of Physiology 590(13): 3035–45.Google Scholar
Stabell, B., and Stabell, U. (2009). Duplicity Theory of Vision: From Newton to the Present. Cambridge University Press, Cambridge.Google Scholar
Stabio, M. E., Sabbah, S., Quattrochi, L. E. et al. (2018). ‘The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell’. Neuron 97(1): 251.Google Scholar
Stanley, P. A., and Davies, A. K. (1995). ‘The effect of field of view size on steady-state pupil diameter’. Ophthalmic and Physiological Optics 15(6): 601–3.Google Scholar
Stark, L., and Sherman, P. M. (1957). ‘A servoanalytic study of consensual pupil reflex to light’. Journal of Neurophysiology 20(1): 1726.Google Scholar
Stephan, F. K., and Zucker, I. (1972). ‘Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions’. PNAS 69(6): 1583–6.Google Scholar
Stevens, J. C., and Stevens, S. S. (1963). ‘Brightness fuction: effects of adaptation’. Journal of the Optical Society of America 53(3): 375–85.Google Scholar
Stone, J. E., Phillips, A. J. K., Ftouni, S. et al. (2019). ‘Generalizability of a neural network model for circadian phase prediction in real-world conditions’. Scientific Reports 9: 11001.Google Scholar
Swanson, W. H., Ueno, T., Smith, V. C., and Pokorny, J. (1987). ‘Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations’. Journal of the Optical Society of America A 4(10): 19922005.Google Scholar
Teixeira, L., Lowden, A., Luz, A. A. et al. (2013). ‘Exposure to bright light during evening class hours increases alertness among working college students’. Sleep Medicine 14(1): 91–7.Google Scholar
Thibos, L. N., Cheney, F. E., and Walsh, D. J. (1987). ‘Retinal limits to the detection and resolution of gratings’. Journal of the Optical Society of America A 4(8): 1524–9.Google Scholar
Tosini, G., Bertolucci, C., and Foà, A. (2001). ‘The circadian system of reptiles: a multioscillatory and multiphotoreceptive system’. Physiology & Behavior 72(4): 461–71.Google Scholar
Tsujimura, S., Ukai, K., Ohama, D., Nuruki, A., and Yunokuchi, K. (2010). ‘Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses’. Proceedings of the Royal Society B: Biological Sciences 277(1693): 2485–92.Google Scholar
Tsujimura, S., Wolffsohn, J. S., and Gilmartin, B. (2001). ‘A linear chromatic mechanism drives the pupillary response’. Proceedings of the Royal Society B: Biological Sciences 268(1482): 2203–9.Google Scholar
Tsujimura, S., and Tokuda, Y. (2011). ‘Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex’. Ophthalmic and Physiological Optics 31(5): 469–79.Google Scholar
Tu, D. C., Owens, L. A., Anderson, L. et al. (2006). ‘Inner retinal photoreception independent of the visual retinoid cycle’. PNAS 103(27): 10426–31.Google Scholar
Tu, D. C., Zhang, D., Demas, al. (2005). ‘Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells’. Neuron 48(6): 987–99.Google Scholar
Underwood, H. (1973). ‘Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards’. Journal of Comparative Physiology 83: 187222.Google Scholar
Underwood, H., and Groos, G. (1982). ‘Vertebrate circadian rhythms: retinal and extraretinal photoreception’. Experientia 38(9): 1013–21.Google Scholar
Underwriters Laboratories Inc. (2019). Design Guideline for Promoting Circadian Entrainment with Light for Day-Active People. Design guideline 24480, Edition 1. Underwriters Laboratories Inc., Northbrook, IL.Google Scholar
Uprety, S., Adhikari, P., Feigl, B., and Zele, A. J. (2022). ‘Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision’. iScience 25(7): 104529.Google Scholar
Uprety, S., Zele, A. J., Feigl, B., Cao, D., and Adhikari, P. (2021). ‘Optimizing methods to isolate melanopsin-directed responses’. Journal of the Optical Society of America A 38(7): 1051–64.Google Scholar
van Oosterhout, F., Fisher, S. P., van Diepen, H. C. et al. (2012). ‘Ultraviolet light provides a major input to non-image-forming light detection in mice’. Current Biology 22(15): 1397–402.Google Scholar
Vandewalle, G., Balteau, E., Phillips, C. et al. (2006). ‘Daytime light exposure dynamically enhances brain responses’. Current Biology 16(16): 1616–21.Google Scholar
Vandewalle, G., Gais, S., Schabus, M. et al. (2007a). ‘Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure’. Cerebral Cortex 17: 2788–95.Google Scholar
Vandewalle, G., Schmidt, C., Albouy, G. et al. (2007b). ‘Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem’. PLOS ONE 2: e1247.Google Scholar
Vetter, C., Pattison, P. M., Houser, K. et al. (2021). ‘A review of human physiological responses to light: implications for the development of integrative lighting solutions’. LEUKOS 18(3): 387414.Google Scholar
Viney, T. J., Balint, K., Hillier, D. et al. (2007). ‘Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing’. Current Biology 17(11): 981–8.Google Scholar
von Helmholtz, H. (1896). Handbuch der physiologischen Optik. L. Voss, Hamburg.Google Scholar
Walmsley, L., Hanna, L., Mouland, J. et al. (2015). ‘Colour as a signal for entraining the mammalian circadian clock’. PLOS Biology 13(4): e1002127.Google Scholar
Webler, F. S., Spitschan, M., Foster, R. G., Andersen, M., and Peirson, S. N. (2019). ‘What is the “spectral diet” of humans?Current Opinion in Behavioral Sciences 30: 80–6.Google Scholar
Webster, J. G. (1969). ‘Critical duration for the pupillary light reflex’. Journal of the Optical Society of America 59(11): 1473–8.Google Scholar
Welsh, D. K., Takahashi, J. S., and Kay, S. A. (2010). ‘Suprachiasmatic nucleus: cell autonomy and network properties’. Annual Review of Physiology 72(1): 551–77.Google Scholar
Westheimer, G. (1966). ‘The Maxwellian view’. Vision Research 6(11–12): 669–82.Google Scholar
Woelders, T., Leenheers, T., Gordijn, M. C. M. et al. (2018). ‘Melanopsin- and L-cone–induced pupil constriction is inhibited by S- and M-cones in humans’. PNAS 115(4): 792–7.Google Scholar
Wong, K. Y., and Fernandez, F.-X. (2021). ‘Circadian responses to light-flash exposure: conceptualization and new data guiding future directions’. Frontiers in Neurology 12: 627550.Google Scholar
Wright, K. P., McHill, A. W., Birks, B. R. et al. (2013). ‘Entrainment of the human circadian clock to the natural light-dark cycle’. Current Biology 23(16): 1554–8.Google Scholar
Yamakawa, M., Tsujimura, S., and Okajima, K. (2019). ‘A quantitative analysis of the contribution of melanopsin to brightness perception’. Scientific Reports 9(1): 7568.Google Scholar
Yang, P.-L., Tsujimura, S., Matsumoto, A., Yamashita, W., and Yeh, S.-L. (2018). ‘Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells’. Scientific Reports 8(1): 11693.Google Scholar
Yoshimura, T., and Ebihara, S. (1996). ‘Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice’. Journal of Comparative Physiology A 178(6): 797802.Google Scholar
Young, R. S. L., and Kimura, E. (2008). ‘Pupillary correlates of light-evoked melanopsin activity in humans’. Vision Research 48(7): 862–71.Google Scholar
Zaidi, F. H., Hull, J. T., Peirson, S. N. et al. (2007). ‘Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina’. Current Biology 17(24): 2122–8.Google Scholar
Zeitzer, J. M., Dijk, D.-J., Kronauer, R. E., Brown, E. N., and Czeisler, C. A. (2000). ‘Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression’. Journal of Physiology 526(3): 695702.Google Scholar
Zeitzer, J. M., Friedman, L., and Yesavage, J. A. (2011a). ‘Effectiveness of evening phototherapy for insomnia is reduced by bright daytime light exposure’. Sleep Medicine 12(8): 805–7.Google Scholar
Zeitzer, J. M., Khalsa, S. B. S., Duffy, J. F. et al. (2005). ‘Dose-dependent response of the human circadian system to photic stimulation during the late biological night’. American Journal of Physiology 289: R839–44.Google Scholar
Zeitzer, J. M., Ruby, N. F., Fisicaro, R. A., and Heller, H. C. (2011b). ‘Response of the human circadian system to millisecond flashes of light’. PLOS ONE 6(7): e22078.Google Scholar
Zele, A. J., Adhikari, P., Cao, D., and Feigl, B. (2019a). ‘Melanopsin and cone photoreceptor inputs to the afferent pupil light response’. Frontiers in Neurology 10(529): 1–7.Google Scholar
Zele, A. J., Adhikari, P., Cao, D., and Feigl, B. (2019b). ‘Melanopsin driven enhancement of cone-mediated visual processing’. Vision Research 160: 7281.Google Scholar
Zele, A. J., Adhikari, P., Feigl, B., and Cao, D. (2018a). ‘Cone and melanopsin contributions to human brightness estimation’. Journal of the Optical Society of America A 35(4): B1925.Google Scholar
Zele, A. J., Adhikari, P., Feigl, B., and Cao, D. (2018b). ‘Cone and melanopsin contributions to human brightness estimation: reply’. Journal of the Optical Society of America A 35(10): 1783.Google Scholar
Zele, A. J., and Cao, D. (2015). ‘Vision under mesopic and scotopic illumination’. Frontiers in Psychology 5(1594): 1–15.Google Scholar
Zele, A. J., Dey, A., Adhikari, P., and Feigl, B. (2020a). ‘Melanopsin hypersensitivity dominates interictal photophobia in migraine’. Cephalalgia 41(2): 217–26.Google Scholar
Zele, A. J., Dey, A., Adhikari, P., and Feigl, B. (2020b). ‘Rhodopsin and melanopsin contributions to human brightness estimation’. Journal of the Optical Society of America A 37(4): A145–53.Google Scholar
Zele, A. J., Feigl, B., Adhikari, P., Maynard, M. L., and Cao, D. (2018c). ‘Melanopsin photoreception contributes to human visual detection, temporal and colour processing’. Scientific Reports 8: 3842.Google Scholar
Zele, A. J., Feigl, B., Smith, S. S., and Markwell, E. L. (2011). ‘The circadian response of intrinsically photosensitive retinal ganglion cells’. PLOS ONE 6(3): e17860.Google Scholar
Zele, A. J., and Gamlin, P. D. (2020). ‘Editorial: The pupil: behavior, anatomy, physiology and clinical biomarkers’. Frontiers in Neurology 11: 211.Google Scholar
Zhang, D.-Q., Wong, K. Y., Sollars, P. J. et al. (2008). ‘Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons’. PNAS 105(37): 14181–6.Google Scholar
Zhang, D. Q., Belenky, M. A., Sollars, P. J., Pickard, G. E., and McMahon, D. G. (2012). ‘Melanopsin mediates retrograde visual signaling in the retina’. PLOS ONE 7(8): e42647.Google Scholar
Zhao, X., Pack, W., Khan, N. W., and Wong, K. Y. (2016). ‘Prolonged inner retinal photoreception depends on the visual retinoid cycle’. Journal of Neuroscience 36(15): 4209–17.Google Scholar
Zhao, X., Stafford, B. K., Godin, A. L., King, W. M., and Wong, K. Y. (2014). ‘Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells’. Journal of Physiology 592(7): 1619–36.Google Scholar
Zhao, X., Wong, K. Y., and Zhang, D. Q. (2017). ‘Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina’. Scientific Reports 7: 7920.Google Scholar
Zhu, H.-F., Zele, A. J., Suheimat, M., Lambert, A. J., and Atchison, D. A. (2016). ‘Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems’. Journal of Vision 16(10): 21.Google Scholar