Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-fg2fv Total loading time: 0.678 Render date: 2021-10-24T01:33:03.355Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Foundations of Quantum Mechanics

Published online by Cambridge University Press:  11 February 2021

Emily Adlam
Affiliation:
University of Cambridge

Summary

Quantum mechanics is an extraordinarily successful scientific theory. But more than 100 years after it was first introduced, the interpretation of the theory remains controversial. This Element introduces some of the most puzzling questions at the foundations of quantum mechanics and provides an up-to-date and forward-looking survey of the most prominent ways in which physicists and philosophers of physics have attempted to resolve them. Topics covered include nonlocality, contextuality, the reality of the wavefunction and the measurement problem. The discussion is supplemented with descriptions of some of the most important mathematical results from recent work in quantum foundations, including Bell's theorem, the Kochen-Specker theorem and the PBR theorem.
Get access
Type
Element
Information
Online ISBN: 9781108885515
Publisher: Cambridge University Press
Print publication: 18 February 2021
Copyright
© Emily Adlam 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S., and Gottesman, D. (2004). Improved simulation of stabilizer circuits. Physical Review A, 70:052328.CrossRefGoogle Scholar
Abramsky, S., and Heunen, C. (2012). Operational theories and categorical quantum mechanics. In Logic and Algebraic Structures in Quantum Computing. Cambridge University Press.Google Scholar
Adlam, E. (2014). The problem of confirmation in the Everett interpretation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 47:2132.CrossRefGoogle Scholar
Adlam, E. (2018a). Quantum mechanics and global determinism. Quanta, 7(1):4053.CrossRefGoogle Scholar
Adlam, E. (2018b). Spooky action at a temporal distance. Entropy, 20(1):41.CrossRefGoogle Scholar
Adler, S. L. (2006). Lower and upper bounds on CSL parameters from latent image formation and IGM heating. Journal of Physics A: Mathematical and Theoretical, 40:29352957.CrossRefGoogle Scholar
Aharonov, Y., Cohen, E., Gruss, E., and Landsberger, T. (2014). Measurement and collapse within the two-state vector formalism. Quantum Studies: Mathematics and Foundations, 1(1–2):133146.CrossRefGoogle Scholar
Aharonov, Y., and Gruss, E. Y. (2005). Two-time interpretation of quantum mechanics. eprint arXiv:quant-ph/0507269.Google Scholar
Albert, D. (2010). Probability in the Everett picture. In Saunders, S., Barrett, J., Kent, A., and Wallace, D., editors, Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.Google Scholar
Allori, V., Goldstein, S., Tumulka, R., and Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. British Journal for the Philosophy of Science, 59(3):353389.CrossRefGoogle Scholar
Allori, V., Goldstein, S., Tumulka, R., and Zanghi, N. (2013). Predictions and primitive ontology in quantum foundations: A study of examples. British Journal for the Philosophy of Science, 65(2):323352.CrossRefGoogle Scholar
Arntzenius, F. (1994). Spacelike connections. British Journal for the Philosophy of Science, 45(1):201217.CrossRefGoogle Scholar
Aspect, A., Grangier, P., and Roger, G. (1981). Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters, 47:460463.CrossRefGoogle Scholar
Barrau, A. (2014). Testing the Everett interpretation of quantum mechanics with cosmology. Electronic Journal of Theoretical Physics, 33:127134.Google Scholar
Barrett, J. (2007). Information processing in generalized probabilistic theories. Physical Review A, 75:032304.CrossRefGoogle Scholar
Bell, J. (1987). Free variables and local causality. In Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.Google Scholar
Bell, J. (2004). Are there quantum jumps? In Speakable and Unspeakable in Quantum Mechanics, 2nd edition. Cambridge University Press.CrossRefGoogle Scholar
Bell, J. S. (1985). Free variables and local causality. In John S. Bell on the Foundations of Quantum Mechanics. World Scientific.Google Scholar
Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3):195.CrossRefGoogle Scholar
Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38(3):447.CrossRefGoogle Scholar
Bell, J. S., and Aspect, A. (2004). Are there quantum jumps? In Speakable and Unspeakable in Quantum Mechanics, 2nd edition. Cambridge University Press.CrossRefGoogle Scholar
Beltrametti, E., and Bujaski, S. (1995). A classical extension of quantum mechanics. Journal of Physics A: Mathematics and General, 37(28):33293343.CrossRefGoogle Scholar
Berkovitz, J. (2002). On causal loops in the quantum realm. In Placek, T. and Butterfield, J., editors, Non-locality and Modality. Kluwer.Google Scholar
Black, M. (1956). Why cannot an effect precede its cause? Analysis, 16(3):4958.CrossRefGoogle Scholar
Bondy, J., and Murty, U. (1976). Graph Theory with Applications. Elsevier Science Publishing.CrossRefGoogle Scholar
Bravyi, S., and Kitaev, A. (2005). Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A., 71(2):022316.CrossRefGoogle Scholar
Brizard, A. (2008). An Introduction to Lagrangian Mechanics. World Scientific.CrossRefGoogle Scholar
Brown, H. R., and Lehmkuhl, D. (2016). Einstein, the reality of space, and the action-reaction principle. In Einstein, Tagore and the Nature of Reality, Routledge Studies in the Philosophy of Mathematics and Physics. Taylor & Francis.Google Scholar
Bruschi, D. E., Sabín, C., Kok, P., Johansson, G., Delsing, P., and Fuentes, I. (2016). Towards universal quantum computation through relativistic motion. Scientific Reports, 6(1):18349.CrossRefGoogle ScholarPubMed
Busch, P., Lahti, J., and Mittelstaedt, P. (1996). The Quantum Theory of Measurement. Springer-Verlag.Google Scholar
Butterfield, J. (1992). Bell’s theorem: What it takes. British Journal for the Philosophy of Science, 43(1):4183.CrossRefGoogle Scholar
Cabello, A., Estebaranz, J., and García-Alcaine, G. (1996). Bell-Kochen-Specker theorem: A proof with 18 vectors. Physics Letters A, 212(4):183187.CrossRefGoogle Scholar
Cabello, A., Severini, S., and Winter, A. (2014). Graph-theoretic approach to quantum correlations. Physical Review Letters, 112(4):040401.CrossRefGoogle ScholarPubMed
Chen, E. K. (2019). Realism about the wave function. Philosophy Compass, 14(7):e12611.CrossRefGoogle Scholar
Clauser, J. F., Horne, M. A., Shimony, A., and Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23:880884.CrossRefGoogle Scholar
Coffman, V., Kundu, J., and Wootters, W. K. (2000). Distributed entanglement. Physical Review A, 61(5):052306.CrossRefGoogle Scholar
Cramer, J. G. (1986). The transactional interpretation of quantum mechanics. Reviews of Modern Physics, 58:647687.CrossRefGoogle Scholar
Cuffaro, M. E. (2015). On the significance of the Gottesman–Knill theorem. British Journal for the Philosophy of Science, 68(1):91121.CrossRefGoogle Scholar
d’ Espagnat, B. (1971). Conceptual Foundations of Quantum Mechanics. Addison-Wesley.Google Scholar
de Muynck, W. M. (2007). POVMs: A small but important step beyond standard quantum mechanics. In Nieuwenhuizen, T. M., Mehmani, B., Špička, V., Aghdami, M. J., and Khrennikov, A. Y., editors, Beyond the Quantum. World Scientific.Google Scholar
Deutsch, D. (2011). The Fabric of Reality. Penguin Books.Google Scholar
Deutsch, D. (2016). The logic of experimental tests, particularly of Everettian quantum theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 55:2433.CrossRefGoogle Scholar
Dürr, D., Goldstein, S., and Zanghi, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67(56).CrossRefGoogle Scholar
Dürr, D., Goldstein, S., and Zanghì, N. (1995). Bohmian mechanics and the meaning of the wave function. In Experimental Metaphysics: Quantum Mechanical Studies in Honor of Abner Shimony. Springer.Google Scholar
Dürr, D., Goldstein, S., and Zanghì, N. (2004). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116(1-4):9591055.CrossRefGoogle Scholar
Dürr, D., Goldstein, S., Norsen, T., Struyve, W., and Zanghì, N. (2014). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2162):20130699.CrossRefGoogle ScholarPubMed
Dürr, D., Goldstein, S., Tumulka, R., and Zanghi, N. (2005). On the role of density matrices in Bohmian mechanics. Foundations of Physics, 35(3):449467.CrossRefGoogle Scholar
Eastin, B., and Knill, E. (2009). Restrictions on transversal encoded quantum gate sets. Physical Review Letters, 102(11):110502.CrossRefGoogle ScholarPubMed
Edward Bruschi, D., Sabín, C., White, A., Baccetti, V., Oi, D. K. L., and Fuentes, I. (2014). Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New Journal of Physics, 16(5):053041.CrossRefGoogle Scholar
Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17:891921.CrossRefGoogle Scholar
Einstein, A. (1920). Relativity: The Special and General Theory. Henry Holt.Google Scholar
Einstein, A. (1948). Quantum mechanics and reality. Dialectica 2(3–4):320324.CrossRefGoogle Scholar
Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47:777780.CrossRefGoogle Scholar
Emerson, J., Serbin, D., Sutherland, C., and Veitch, V. (2013). The whole is greater than the sum of the parts: On the possibility of purely statistical interpretations of quantum theory. ArXiv eprints.Google Scholar
Esfeld, M., and Gisin, N. (2013). The GRW flash theory: A relativistic quantum ontology of matter in space-time? ArXiv eprints.CrossRefGoogle Scholar
Everett, H. (2016). ‘Relative state’ formulation of quantum mechanics. In The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press.Google Scholar
Faye, J. (2019). Copenhagen interpretation of quantum mechanics. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, winter 2019 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Frauchiger, D., and Renner, R. (2018). Quantum theory cannot consistently describe the use of itself. Nature Communications, 9(1):3711.CrossRefGoogle Scholar
Friederich, S., and Evans, P. W. (2019). Retrocausality in quantum mechanics. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, summer 2019 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Fuchs, C. A. (2010). QBism, the perimeter of quantum Bayesianism. ArXiv eprints.Google Scholar
Gell-Mann, M. (1980). Questions for the future. In Wolfson College Lectures. Oxford University Press.Google Scholar
Ghirardi, G. C., Rimini, A., and Weber, T. (1986a). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34:470491.CrossRefGoogle ScholarPubMed
Ghirardi, G. C., Rimini, A., and Weber, T. (1986b). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34:470491.CrossRefGoogle ScholarPubMed
Goldstein, S., and Teufel, S. (1999). Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity. In Quantum Physics Without Quantum Philosophy. Springer.Google Scholar
Goldstein, S., and Tumulka, R. (2003). Opposite arrows of time can reconcile relativity and nonlocality. Classical and Quantum Gravity, 20(3):557564.CrossRefGoogle Scholar
Gottesman, D. (1998). The Heisenberg representation of quantum computers. Speech at the 1998 International Conference on Group Theoretic Methods in Physics.Google Scholar
Greaves, H. (2007). Probability in the Everett interpretation. Philosophy Compass, 2(1):109128.CrossRefGoogle Scholar
Halpern, J. Y., and Tuttle, M. R. (1993). Knowledge, probability, and adversaries. Journal of the ACM, 40(4):917960.CrossRefGoogle Scholar
Hardy, L., and Spekkens, R. (2010). Why physics needs quantum foundations. Physics in Canada, 66(2):7376.Google Scholar
Harrigan, N., and Spekkens, R. W. (2010). Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics, 40:125157.CrossRefGoogle Scholar
Held, C. (2014). The Kochen-Specker theorem. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, winter 2014 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., Ruitenberg, J., Vermeulen, R. F. L., Schouten, R. N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M. W., Markham, M., Twitchen, D. J., Elkouss, D., Wehner, S., Taminiau, T. H., and Hanson, R. (2015). Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature, 526:682686.CrossRefGoogle Scholar
Hesse, M. B. (1955). Action at a distance in classical physics. Isis, 46(4):337353.CrossRefGoogle Scholar
Hoefer, C. (2016). Causal determinism. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, spring 2016 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Holland, P. (1995). The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press.Google Scholar
Horne, M. A., Clauser, J. F., and Shimony, A. (1993). An Exchange on Local Beables, volume 2. Cambridge University Press.CrossRefGoogle Scholar
Hossenfelder, S. (2018). Lost in Math: How Beauty Leads Physics Astray. Basic Books.Google Scholar
Hossenfelder, S., and Palmer, T. (2020). Rethinking superdeterminism. Frontiers in Physics, 8:139.CrossRefGoogle Scholar
Howard, M., Wallman, J., Veitch, V., and Emerson, J. (2014). Contextuality supplies the ‘magic’ for quantum computation. Nature, 510:351355.CrossRefGoogle ScholarPubMed
Kent, A. (2009). One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In Many Worlds? Everett, Quantum Theory and Reality. Oxford University Press.Google Scholar
Kent, A. (2010). One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation. In Saunders, S., Barrett, J., Kent, A., and Wallace, D., editors, Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.Google Scholar
Kent, A. (2013). A no-summoning theorem in relativistic quantum theory. Quantum Information Processing, 12(2):10231032.CrossRefGoogle Scholar
Kielpinski, D., Meyer, V., Sackett, C. A., Itano, W. M., Monroe, C., and Wineland, D. J. (2001). Experimental violation of a Bell’s inequality with efficient detection. Nature, 409:791794.Google Scholar
Koashi, M., and Winter, A. (2004). Monogamy of quantum entanglement and other correlations. Physical Review A, 69(2):022309.CrossRefGoogle Scholar
Kochen, S., and Specker, E. (1975). The problem of hidden variables in quantum mechanics. In Hooker, C., editor, The Logico-Algebraic Approach to Quantum Mechanics, volume 5a of The University of Western Ontario Series in Philosophy of Science. Springer.Google Scholar
Kuhlmann, M. (2018). Quantum field theory. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, winter 2018 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Lancaster, T., and Blundell, S. (2014). Quantum Field Theory for the Gifted Amateur. Oxford University Press.CrossRefGoogle Scholar
Landau, L., and Lifshitz, E. (2013). Quantum Mechanics: Non-Relativistic Theory. Elsevier Science.Google Scholar
Leifer, M. (2014). Is the quantum state real? An extended review of -ontology theorems. Quanta, 3(1):67155.CrossRefGoogle Scholar
Leifer, M., and Pusey, M. (2017). Is a time symmetric interpretation of quantum theory possible without retrocausality? Proceedings of the Royal Society A.CrossRefGoogle Scholar
Lewis, D. K. (1980). A subjectivist’s guide to objective chance. In Jeffrey, R. C., editor, Studies in Inductive Logic and Probability, volume 2. University of California Press.Google Scholar
Lewis, P. J. (2004). Interpreting spontaneous collapse theories. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 36(1):165180.CrossRefGoogle Scholar
Lindkvist, J., Sabín, C., Johansson, G., and Fuentes, I. (2015). Motion and gravity effects in the precision of quantum clocks. Scientific Reports, 5(1):10070.CrossRefGoogle ScholarPubMed
Lindley, D. (2008). Uncertainty. Knopf Doubleday.Google Scholar
MacKenzie, R. (2000). Path integral methods and applications. Lectures given at Rencontres du Vietnam, 6. Vietnam School of Physics.Google Scholar
Mari, A., and Eisert, J. (2012). Positive Wigner functions render classical simulation of quantum computation efficient. Physical Review Letters, 109:230503.CrossRefGoogle ScholarPubMed
Masanes, L., and Müller, M. P. (2011). A derivation of quantum theory from physical requirements. New Journal of Physics, 13(6):063001.CrossRefGoogle Scholar
Maudlin, T. (2011). Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics. Wiley.CrossRefGoogle Scholar
Maudlin, T. (2012). Philosophy of Physics: Space and Time. Princeton University Press.Google Scholar
Meacham, C. J. G. (2008). Sleeping beauty and the dynamics of de se beliefs. Philosophical Studies, 138(2):245269.CrossRefGoogle Scholar
Navascués, M., Guryanova, Y., Hoban, M. J., and Acín, A. (2015). Almost quantum correlations. Nature Communications, 6(1):6288.CrossRefGoogle ScholarPubMed
Nielsen, M. A., and Chuang, I. L. (2011). Quantum Computation and Quantum Information, 10th edition. Cambridge University Press.Google Scholar
Oreshkov, O., and Cerf, N. J. (2016). Operational quantum theory without predefined time. New Journal of Physics, 18(7):073037.CrossRefGoogle Scholar
Paris, M. G. A. (2012). The modern tools of quantum mechanics. A tutorial on quantum states, measurements, and operations. European Physical Journal Special Topics, 203:6186.CrossRefGoogle Scholar
Pawlowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., and Żukowski, M. (2009). Information causality as a physical principle. Nature, 461:11011104.CrossRefGoogle ScholarPubMed
Peskin, M., and Schroeder, D. (1995). An Introduction to Quantum Field Theory. Westview Press.Google Scholar
Price, H. (1994). A neglected route to realism about quantum mechanics. Mind, 103(411):303336.CrossRefGoogle Scholar
Price, H. (2008). Decisions, decisions, decisions: Can Savage salvage Everettian probability? Presented at the Many Worlds at 50 conference. Perimeter Institute.Google Scholar
Price, H. (2010). Does Time-Symmetry Imply Retrocausality? How the Quantum World Says ‘Maybe’. Studies in History and Philosophy of Modern Physics, 43:7583.CrossRefGoogle Scholar
Pusey, M. F., Barrett, J., and Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8:476479.CrossRefGoogle Scholar
Robinson, H. (2017). Dualism. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, fall 2017 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Rohrlich, D., and Popescu, S. (1995). Nonlocality as an axiom for quantum theory. Presented at 60 Years of E.P.R. conference, Israel.Google Scholar
Samuel Reich, E. (2011). Quantum theorem shakes foundations. Nature. www.nature.com/news/quantum-theorem-shakes-foundations-1.9392.CrossRefGoogle Scholar
Sartori, L. (1996). Understanding Relativity: A Simplified Approach to Einstein’s Theories. University of California Press.CrossRefGoogle Scholar
Schreiber, O., and Spekkens, R. (2008). The power of epistemic restrictions in axiomatizing quantum theory: From trits to qutrits. Unpublished work. Videos of talks discussing this material are available: Spekkens R. W., Talk, July 17, 2008, University of Oxford, Spekkens R. W., Talk, August 10, 2008, Perimeter Institute, PIRSA:09080009.Google Scholar
Sebens, C. T., and Carroll, S. M. (2016). Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. British Journal for the Philosophy of Science, 69(1):2574.CrossRefGoogle Scholar
Seevinck, M. P. (2010). Can quantum theory and special relativity peacefully coexist? In Quantum Physics and the Nature of Reality. Oxford University Press.Google Scholar
Seevinck, M. P. (2010). Monogamy of correlations versus monogamy of entanglement. Quantum Information Processing, 9(2):273294.CrossRefGoogle Scholar
Shahandeh, F. (2019). The Resource Theory of Entanglement, Springer International.CrossRefGoogle Scholar
Shimony, A. (1990). Desiderata for a modified quantum dynamics. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1990:4959.Google Scholar
Shimony, A. (2013). Bell’s theorem. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy, winter 2013 edition. Metaphysics Research Lab, Stanford University.Google Scholar
Sklar, L. (1993). Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Sklar, L. (2012). Philosophy and the Foundations of Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Spekkens, R. W. (n.d.). Private communication.Google Scholar
Spekkens, R. W. (2005). Contextuality for preparations, transformations, and unsharp measurements. Physical Review A, 71(5):052108.CrossRefGoogle Scholar
Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75(3):032110.CrossRefGoogle Scholar
Stone, J. (2013). Bayes’ Rule: A Tutorial Introduction to Bayesian Analysis. Sebtel Press.Google Scholar
Strang, G. (2016). Introduction to Linear Algebra. Cambridge University Press.Google Scholar
Thomas, J., and Cover, T. (2006). Elements of Information Theory. Wiley.Google Scholar
Timpson, C. G. (2008). Philosophical aspects of quantum information theory. In Rickles, D., editor, The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.Google Scholar
Titelbaum, M. G. (2008). The relevance of self-locating beliefs. The Philosophical Review, 117(4):555605.CrossRefGoogle Scholar
Toner, B. (2009). Monogamy of non-local quantum correlations. Proceedings of the Royal Society of London Series A, 465:5969.Google Scholar
Toner, B., and Verstraete, F. (2006). Monogamy of Bell correlations and Tsirelson’s bound. eprint arXiv:quant-ph/0611001.Google Scholar
Toroš, M., and Bassi, A. (2018). Bounds on quantum collapse models from matter-wave interferometry: Calculational details. Journal of Physics A: Mathematical and Theoretical, 51(11):115302.CrossRefGoogle Scholar
Tsirelson, B. S. (1980). Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics. 4:93100.CrossRefGoogle Scholar
Tumulka, R. (2006). A relativistic version of the Ghirardi–Rimini–Weber model. Journal of Statistical Physics, 125(4):821840.CrossRefGoogle Scholar
Tumulka, R. (2020). A relativistic GRW flash process with interaction. n.p.Google Scholar
Vaidman, L. (1998). On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. International Studies in the Philosophy of Science, 12(3):245261.CrossRefGoogle Scholar
Valentini, A. (2010). Inflationary cosmology as a probe of primordial quantum mechanics. Physical Review D, 82(6): 063513.CrossRefGoogle Scholar
Valentini, A., and Westman, H. (2005). Dynamical origin of quantum probabilities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2053):253272.CrossRefGoogle Scholar
Veitch, V., Ferrie, C., Gross, D., and Emerson, J. (2012). Negative quasi-probability as a resource for quantum computation. New Journal of Physics, 14(11):113011.CrossRefGoogle Scholar
Veitch, V., Hamed Mousavian, S. A., Gottesman, D., and Emerson, J. (2014). The resource theory of stabilizer quantum computation. New Journal of Physics, 16(1):013009.CrossRefGoogle Scholar
Wallace, D. (2007). The quantum measurement problem: State of play. In The Ashgate Companion to the New Philosophy of Physics. Ashgate.Google Scholar
Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press.CrossRefGoogle Scholar
Walleczek, J., and Grössing, G. (2014). The non-signalling theorem in generalizations of Bell’s theorem. In Journal of Physics: Conference Series, volume 504, page 012001. IOP Publishing.Google Scholar
Weinberg, S. (2014). Quantum mechanics without state vectors. Physical Review A, 90(4):042102.CrossRefGoogle Scholar
Wharton, K. (2015). The universe is not a computer. In Aguirre, A., F. B., and Merali, G., editors, Questioning the Foundations of Physics. Springer.Google Scholar
Wigner, E. P. (1961). Remarks on the mind-body question. In Good, I. J., editor, The Scientist Speculates. Heineman.Google Scholar
Wiseman, H. M. (2006). From Einstein’s theorem to Bell’s theorem: A history of quantum non-locality. Contemporary Physics, 47:7988.CrossRefGoogle Scholar
Żukowski, M., Zeilinger, A., Horne, M. A., and Ekert, A. K. (1993). ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Physical Review Letters, 71:42874290.CrossRefGoogle ScholarPubMed

Send element to Kindle

To send this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Foundations of Quantum Mechanics
  • Emily Adlam, University of Cambridge
  • Online ISBN: 9781108885515
Available formats
×

Send element to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Foundations of Quantum Mechanics
  • Emily Adlam, University of Cambridge
  • Online ISBN: 9781108885515
Available formats
×

Send element to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Foundations of Quantum Mechanics
  • Emily Adlam, University of Cambridge
  • Online ISBN: 9781108885515
Available formats
×