We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we study the observability (or equivalently, the controllability) of some subelliptic evolution equations depending on their step. This sheds light on the speed of propagation of these equations, notably in the ‘degenerated directions’ of the subelliptic structure.
First, for any $\gamma \geq 1$, we establish a resolvent estimate for the Baouendi–Grushin-type operator $\Delta _{\gamma }=\partial _x^2+\left \lvert x\right \rvert ^{2\gamma }\partial _y^2$, which has step $\gamma +1$. We then derive consequences for the observability of the Schrödinger-type equation $i\partial _tu-\left (-\Delta _{\gamma }\right )^{s}u=0$, where $s\in \mathbb N$. We identify three different cases: depending on the value of the ratio $(\gamma +1)/s$, observability may hold in arbitrarily small time or only for sufficiently large times or may even fail for any time.
As a corollary of our resolvent estimate, we also obtain observability for heat-type equations $\partial _tu+\left (-\Delta _{\gamma }\right )^su=0$ and establish a decay rate for the damped wave equation associated with $\Delta _{\gamma }$.
We consider continuous cocycles arising from CMV and Jacobi matrices. Assuming that the Verblunsky and Jacobi coefficients arise from generalized skew-shifts, we prove that uniform hyperbolicity of the associated cocycles is $C^0$-dense. This implies that the associated CMV and Jacobi matrices have a Cantor spectrum for a generic continuous sampling map.
We observe that every self-dual ternary code determines a holomorphic $\mathcal N=1$ superconformal field theory. This provides ternary constructions of some well-known holomorphic $\mathcal N=1$ superconformal field theories (SCFTs), including Duncan’s “supermoonshine” model and the fermionic “beauty and the beast” model of Dixon, Ginsparg, and Harvey. Along the way, we clarify some issues related to orbifolds of fermionic holomorphic CFTs. We give a simple coding-theoretic description of the supersymmetric index and conjecture that for every self-dual ternary code this index is divisible by $24$; we are able to prove this conjecture except in the case when the code has length $12$ mod $24$. Lastly, we discuss a conjecture of Stolz and Teichner relating $\mathcal N=1$ SCFTs with Topological Modular Forms. This conjecture implies constraints on the supersymmetric indexes of arbitrary holomorphic SCFTs, and suggests (but does not require) that there should be, for each k, a holomorphic $\mathcal N=1$ SCFT of central charge $12k$ and index $24/\gcd (k,24)$. We give ternary code constructions of SCFTs realizing this suggestion for $k\leq 5$.
We consider a system of N bosons in the mean-field scaling regime for a class of interactions including the repulsive Coulomb potential. We derive an asymptotic expansion of the low-energy eigenstates and the corresponding energies, which provides corrections to Bogoliubov theory to any order in $1/N$.
We consider autocorrelation functions for supersymmetric quantum mechanical systems (consisting of a fermion and a boson) confined in trigonometric Pöschl–Teller partner potentials. We study the limit of rescaled autocorrelation functions (at random time) as the localization of the initial state goes to infinity. The limiting distribution can be described using pairs of Jacobi theta functions on a suitably defined homogeneous space, as a corollary of the work of Cellarosi and Marklof. A construction by Contreras-Astorga and Fernández provides large classes of Pöschl-Teller partner potentials to which our analysis applies.
We consider the mass-critical non-linear Schrödinger equation on non-compact metric graphs. A quite complete description of the structure of the ground states, which correspond to global minimizers of the energy functional under a mass constraint, is provided by Adami, Serra and Tilli in [R. Adami, E. Serra and P. Tilli. Negative energy ground states for the L2-critical NLSE on metric graphs. Comm. Math. Phys. 352 (2017), 387–406.] , where it is proved that existence and properties of ground states depend in a crucial way on both the value of the mass, and the topological properties of the underlying graph. In this paper we address cases when ground states do not exist and show that, under suitable assumptions, constrained local minimizers of the energy do exist. This result paves the way to the existence of stable solutions in the time-dependent equation in cases where the ground state energy level is not achieved.
The classical Monge–Kantorovich (MK) problem as originally posed is concerned with how best to move a pile of soil or rubble to an excavation or fill with the least amount of work relative to some cost function. When the cost is given by the square of the Euclidean distance, one can define a metric on densities called the Wasserstein distance. In this note, we formulate a natural matrix counterpart of the MK problem for positive-definite density matrices. We prove a number of results about this metric including showing that it can be formulated as a convex optimisation problem, strong duality, an analogue of the Poincaré–Wirtinger inequality and a Lax–Hopf–Oleinik–type result.
The stationary Gross–Pitaevskii equation in one dimension is considered with a complex periodic potential satisfying the conditions of the 𝒫𝒯 (parity-time reversal) symmetry. Under rather general assumptions on the potentials, we prove bifurcations of 𝒫𝒯-symmetric nonlinear bound states from the end points of a real interval in the spectrum of the non-selfadjoint linear Schrödinger operator with a complex 𝒫𝒯-symmetric periodic potential. The nonlinear bound states are approximated by the effective amplitude equation, which bears the form of the cubic nonlinear Schrödinger equation. In addition, we provide sufficient conditions for the appearance of complex spectral bands when the complex 𝒫𝒯-symmetric potential has an asymptotically small imaginary part.
It is an open question whether the fractional parts of non-linear polynomials at integers have the same fine-scale statistics as a Poisson point process. Most results towards an affirmative answer have so far been restricted to almost sure convergence in the space of polynomials of a given degree. We will here provide explicit Diophantine conditions on the coefficients of polynomials of degree two, under which the convergence of an averaged pair correlation density can be established. The limit is consistent with the Poisson distribution. Since quadratic polynomials at integers represent the energy levels of a class of integrable quantum systems, our findings provide further evidence for the Berry–Tabor conjecture in the theory of quantum chaos.
This paper is devoted to dimensional reductions via the norm-resolvent convergence. We derive explicit bounds on the resolvent difference as well as spectral asymptotics. The efficiency of our abstract tool is demonstrated by its application on seemingly different partial differential equation problems from various areas of mathematical physics; all are analysed in a unified manner, known results are recovered and new ones established.
We study bound states in weakly deformed and heterogeneous waveguides, and compare analytical predictions using a recently developed perturbative method with precise numerical results for three different configurations: a homogeneous asymmetric waveguide, a heterogenous asymmetric waveguide and a homogeneous broken strip. We have found excellent agreement between the analytical and numerical results in all the examples; this provides a numerical verification of the analytical approach.
Conditionally on the generalized Lindelöf hypothesis, we obtain an asymptotic for the fourth moment of Hecke–Maass cusp forms of large Laplacian eigenvalue for the full modular group. This lends support to the random wave conjecture.
A Lagrangian surface hopping algorithm is implemented to study the two dimensional massless Dirac equation for Graphene with an electrostatic potential, in the semiclassical regime. In this problem, the crossing of the energy levels of the system at Dirac points requires a particular treatment in the algorithm in order to describe the quantum transition—characterized by the Landau-Zener probability— between different energy levels. We first derive the Landau-Zener probability for the underlying problem, then incorporate it into the surface hopping algorithm. We also show that different asymptotic models for this problem derived in [O. Morandi, F. Schurrer, J. Phys. A:Math. Theor. 44 (2011) 265301]may give different transition probabilities. We conduct numerical experiments to compare the solutions to the Dirac equation, the surface hopping algorithm, and the asymptotic models of [O. Morandi, F. Schurrer, J. Phys. A: Math. Theor. 44 (2011) 265301].
We extend the full wavefield modeling with forward scattering theory and Volterra Renormalization to a vertically varying two-parameter (velocity and density) acoustic medium. The forward scattering series, derived by applying Born-Neumann iterative procedure to the Lippmann-Schwinger equation (LSE), is a well known tool for modeling and imaging. However, it has limited convergence properties depending on the strength of contrast between the actual and reference medium or the angle of incidence of a plane wave component. Here, we introduce the Volterra renormalization technique to the LSE. The renormalized LSE and related Neumann series are absolutely convergent for any strength of perturbation and any incidence angle. The renormalized LSE can further be separated into two sub-Volterra type integral equations, which are then solved noniteratively. We apply the approach to velocity-only, density-only, and both velocity and density perturbations. We demonstrate that this Volterra Renormalization modeling is a promising and efficient method. In addition, it can also provide insight for developing a scattering theory-based direct inversion method.
In this paper, we propose an uniformly convergent adaptive finite element method with hybrid basis (AFEM-HB) for the discretization of singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation (BEC) and quantum chemistry. We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched asymptotic approximations for the problem are reviewed to confirm the asymptotic behaviors of the solutions in the boundary/interior layer regions. By using the normalized gradient flow, we propose an adaptive finite element with hybrid basis to solve the singularly perturbed nonlinear eigenvalue problem. Our basis functions and the mesh are chosen adaptively to the small parameter ε. Extensive numerical results are reported to show the uniform convergence property of our method. We also apply the AFEM-HB to compute the ground and excited states of BEC with box/harmonic/optical lattice potential in the semiclassical regime (0 <ε≪C 1). In addition, we give a detailed error analysis of our AFEM-HB to a simpler singularly perturbed two point boundary value problem, show that our method has a minimum uniform convergence order
Consider the (elliptic) stationary nonlinear reaction–diffusion equation in a sequence of bounded Neumann tubes in a space that is squeezed to a reference curve. It is supposed that the forcing term is square integrable and that the nonlinear one satisfies some growth and dissipative conditions. A norm convergence of the resolvents of the operators associated with the linear terms of such equations is proven, and this fact is used to provide new and simpler proofs of the asymptotic behaviour of the solutions to the full nonlinear equations (previously known in similar singular problems).
We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit, and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.
In this paper, we numerically study the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Due to the nonlocality of the fractional Laplacian, it is challenging to find the eigenvalues and eigenfunctions of the fractional Schrödinger equation analytically. We first introduce a normalized fractional gradient flow and then discretize it by a quadrature rule method in space and the semi-implicit Euler method in time. Our numerical results suggest that the eigenfunctions of the fractional Schrödinger equation in an infinite potential well differ from those of the standard (non-fractional) Schrödinger equation. We find that the strong nonlocal interactions represented by the fractional Laplacian can lead to a large scattering of particles inside of the potential well. Compared to the ground states, the scattering of particles in the first excited states is larger. Furthermore, boundary layers emerge in the ground states and additionally inner layers exist in the first excited states of the fractional nonlinear Schrödinger equation. Our simulated eigenvalues are consistent with the lower and upper bound estimates in the literature.
Numerical atomic orbitals have been successfully used in molecular simulations as a basis set, which provides a nature, physical description of the electronic states and is suitable for 𝒪(N) calculations based on the strictly localized property. This paper presents a numerical analysis for some simplified atomic orbitals, with polynomial-type and confined Hydrogen-like radial basis functions respectively. We give some a priori error estimates to understand why numerical atomic orbitals are computationally efficient in electronic structure calculations.
Laplace operators on finite compact metric graphs are considered under the assumption that matching conditions at graph vertices are of types ${\it\delta}$ and ${\it\delta}^{\prime }$. Assuming rational independence of edge lengths, necessary and sufficient conditions for isospectrality of two Laplacians defined on the same graph are derived and scrutinized. It is proved that the spectrum of a graph Laplacian uniquely determines matching conditions for “almost all” graphs.