We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given
$\alpha \in (0,1]$
and
$c>0$
(with
$c\leq 1$
if
$\alpha =1$
), a generalized number system is constructed with Riemann prime counting function
$ \Pi (x)= \operatorname {\mathrm {Li}}(x)+ O(x\exp (-c \log ^{\alpha } x ) +\log _{2}x), $
and whose integer counting function satisfies the extremal oscillation estimate
$N(x)=\rho x + \Omega _{\pm }(x\exp (- c'(\log x\log _{2} x)^{\frac {\alpha }{\alpha +1}})$
for any
$c'>(c(\alpha +1))^{\frac {1}{\alpha +1}}$
, where
$\rho>0$
is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
The Euler–Mascheroni constant
$\gamma =0.5772\ldots \!$
is the
$K={\mathbb Q}$
example of an Euler–Kronecker constant
$\gamma _K$
of a number field
$K.$
In this note, we consider the size of the
$\gamma _q=\gamma _{K_q}$
for cyclotomic fields
$K_q:={\mathbb Q}(\zeta _q).$
Assuming the Elliott–Halberstam Conjecture (EH), we prove uniformly in Q that
In other words, under EH, the
$\gamma _q /\!\log q$
in these ranges converge to the one point distribution at
$1$
. This theorem refines and extends a previous result of Ford, Luca and Moree for prime
$q.$
The proof of this result is a straightforward modification of earlier work of Fouvry under the assumption of EH.
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric
$\{\pm 1\}$
-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random
$\{\pm 1\}$
-matrices over
$\mathbb{F}_p$
for primes
$2 < p \leq \exp(O(n^{1/4}))$
. Previously, such estimates were available only for
$p = o(n^{1/8})$
. At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in
$\mathbb{F}_p^{n}$
with anticoncentration at least
$1/p + \Omega(1/p^2)$
. Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least
$C/p$
for some large constant
$C > 1$
.
We obtain some improved results for the exponential sum $\sum _{x<n\leq 2x}\Lambda (n)e(\alpha k n^{\theta })$ with $\theta \in (0,5/12),$ where $\Lambda (n)$ is the von Mangoldt function. Such exponential sums have relations with the so-called quasi-Riemann hypothesis and were considered by Murty and Srinivas [‘On the uniform distribution of certain sequences’, Ramanujan J.7 (2003), 185–192].
We prove that the Riemann hypothesis is equivalent to the condition
$\int _{2}^x\left (\pi (t)-\operatorname {\textrm {li}}(t)\right )\textrm {d}t<0$
for all
$x>2$
. Here,
$\pi (t)$
is the prime-counting function and
$\operatorname {\textrm {li}}(t)$
is the logarithmic integral. This makes explicit a claim of Pintz. Moreover, we prove an analogous result for the Chebyshev function
$\theta (t)$
and discuss the extent to which one can make related claims unconditionally.
In this paper, we study lower-order terms of the one-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the generalized Riemann hypothesis, our result is valid for even test functions whose Fourier transforms are supported in $(-2, 2)$. Moreover, we apply the ratios conjecture of L-functions to derive these lower-order terms as well. Up to the first lower-order term, we show that our results are consistent with each other when the Fourier transforms of the test functions are supported in $(-2, 2)$.
The aim of this article is to establish the behaviour of partial Euler products for Dirichlet L-functions under the generalised Riemann hypothesis (GRH) via Ramanujan’s work. To understand the behaviour of Euler products on the critical line, we invoke the deep Riemann hypothesis (DRH). This work clarifies the relation between GRH and DRH.
In this paper, we obtain a precise formula for the one-level density of L-functions attached to non-Galois cubic Dedekind zeta functions. We find a secondary term which is unique to this context, in the sense that no lower-order term of this shape has appeared in previously studied families. The presence of this new term allows us to deduce an omega result for cubic field counting functions, under the assumption of the Generalised Riemann Hypothesis. We also investigate the associated L-functions Ratios Conjecture and find that it does not predict this new lower-order term. Taking into account the secondary term in Roberts’s conjecture, we refine the Ratios Conjecture to one which captures this new term. Finally, we show that any improvement in the exponent of the error term of the recent Bhargava–Taniguchi–Thorne cubic field counting estimate would imply that the best possible error term in the refined Ratios Conjecture is
$O_\varepsilon (X^{-\frac 13+\varepsilon })$
. This is in opposition with all previously studied families in which the expected error in the Ratios Conjecture prediction for the one-level density is
$O_\varepsilon (X^{-\frac 12+\varepsilon })$
.
A new reciprocity formula for Dirichlet L-functions associated to an arbitrary primitive Dirichlet character of prime modulus q is established. We find an identity relating the fourth moment of individual Dirichlet L-functions in the t-aspect to the cubic moment of central L-values of Hecke–Maaß newforms of level at most
$q^{2}$
and primitive central character
$\psi ^{2}$
averaged over all primitive nonquadratic characters
$\psi $
modulo q. Our formula can be thought of as a reverse version of recent work of Petrow–Young. Direct corollaries involve a variant of Iwaniec’s short interval fourth moment bound and the twelfth moment bound for Dirichlet L-functions, which generalise work of Jutila and Heath-Brown, respectively. This work traverses an intersection of classical analytic number theory and automorphic forms.
We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms
$u_j$
with spectral parameter
$t_j$
, where the second moment is a sum over
$t_j$
in a short interval. At the central point
$s=1/2$
of the L-function, our interval is smaller than previous known results. More specifically, for
$\left \lvert t_j\right \rvert $
of size T, our interval is of size
$T^{1/5}$
, whereas the previous best was
$T^{1/3}$
, from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at
$s=1/2+it$
provided
$\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $
for any fixed
$\delta>0$
. Since
$\lvert t\rvert $
can be taken significantly smaller than
$\left \lvert t_j\right \rvert $
, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at
$s=1/2$
.
In this note, by introducing a new variant of the resonator function, we give an explicit version of the lower bound for
$\log |L(\sigma ,\chi )|$
in the strip
$1/2<\sigma <1$
, which improves the result of Aistleitner et al. [‘On large values of
$L(\sigma ,\chi )$
’, Q. J. Math.70 (2019), 831–848].
We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.
The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$, for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).
En s’appuyant sur la notion d’équivalence au sens de Bohr entre polynômes de Dirichlet et sur le fait que sur un corps quadratique la fonction zeta de Dedekind peut s’écrire comme produit de la fonction zeta de Riemann et d’une fonction L, nous montrons que, pour certaines valeurs du discriminant du corps quadratique, les sommes partielles de la fonction zeta de Dedekind ont leurs zéros dans des bandes verticales du plan complexe appelées bandes critiques et que les parties réelles de leurs zéros y sont denses.
The Zagier L-series encode data of real quadratic fields. We study the average size of these L-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.
Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of functions related to Riemann zeta function $\zeta (s)=\sum \nolimits _{n=1}^{\infty } {1}/{n^{s}}$ and other Dirichlet series.
Let
$\pi $
be an automorphic irreducible cuspidal representation of
$\mathrm{GL}_{m}$
over
$\mathbb {Q}$
. Denoted by
$\lambda _{\pi }(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi )$
associated with
$\pi $
. Let
$\pi _{1}$
be an automorphic irreducible cuspidal representation of
$\mathrm{SL}(2,\mathbb {Z})$
. Denoted by
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi _{1}\times \pi _{1})$
associated with
$\pi _{1}\times \pi _{1}$
. In this paper, we study the cancellations of
$\lambda _{\pi }(n)$
and
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
over Beatty sequences.
The multiple T-value, which is a variant of the multiple zeta value of level two, was introduced by Kaneko and Tsumura [‘Zeta functions connecting multiple zeta values and poly-Bernoulli numbers’, in: Various Aspects of Multiple Zeta Functions, Advanced Studies in Pure Mathematics, 84 (Mathematical Society of Japan, Tokyo, 2020), 181–204]. We show that the generating function of a weighted sum of multiple T-values of fixed weight and depth is given in terms of the multiple T-values of depth one by solving a differential equation of Heun type.
We study the depth filtration on multiple zeta values, on the motivic Galois group of mixed Tate motives over $\mathbb {Z}$ and on the Grothendieck–Teichmüller group, and its relation to modular forms. Using period polynomials for cusp forms for $\mathrm {SL} _2(\mathbb {Z})$, we construct an explicit Lie algebra of solutions to the linearized double shuffle equations, which gives a conjectural description of all identities between multiple zeta values modulo $\zeta (2)$ and modulo lower depth. We formulate a single conjecture about the homology of this Lie algebra which implies conjectures due to Broadhurst and Kreimer, Racinet, Zagier, and Drinfeld on the structure of multiple zeta values and on the Grothendieck–Teichmüller Lie algebra.
Let
$\mathbb {F}_q$
be the finite field of q elements. In this paper, we study the vanishing behavior of multizeta values over
$\mathbb {F}_q[t]$
at negative integers. These values are analogs of the classical multizeta values. At negative integers, they are series of products of power sums
$S_d(k)$
which are polynomials in t. By studying the t-valuation of
$S_d(s)$
for
$s < 0$
, we show that multizeta values at negative integers vanish only at trivial zeros. The proof is inspired by the idea of Sheats in the proof of a statement of “greedy element” by Carlitz.