Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T23:59:01.539Z Has data issue: false hasContentIssue false

7 - Why do woodpecker finches use tools?

from Part II - Comparative cognition

Published online by Cambridge University Press:  05 March 2013

Sabine Tebbich
Affiliation:
University of Vienna
Irmgard Teschke
Affiliation:
Max Planck Institute for Ornithology
Crickette M. Sanz
Affiliation:
Washington University, St Louis
Josep Call
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Get access

Summary

Introduction

Niko Tinbergen (1963) proposed four levels of analysis in seeking to explain why a given behavior exists: phylogenetic, functional, developmental and mechanistic. He postulated that only the integration of all four levels enables us to fully understand behavior. Animal tool use initially captivated the scientific world because of its resemblance to our own behavior, creating the impression that the origin of our own physical intelligence could be found in our close – and perhaps even distant – animal relatives. For a long time research on animal tool use has focused on the mechanistic and the ontogenetic level. The main question fueling this research was whether the cognitive abilities of humans and animals are on a continuum or whether one or several qualitative delimiting differences exist. Probably for this reason, most research has focused on primates and specifically on apes, our closest relatives. The anthropocentric approach has been helpful in drawing attention to the phenomenon of animal tool use. However, the empirical research on the cognitive abilities underlying this ability has revealed that even chimpanzees (Pan troglodytes), our closest relatives, do not possess a human-like understanding of the physical regularities governing tool use (Povinelli, 2000; Penn & Povinelli, 2007). A major contribution that this line of research has made to the field of comparative cognition is the growing awareness that a dichotomous distinction between high- and low-level processes may not be fruitful (Chappell, 2006). To date, the performance of New Caledonian crows (Corvus moneduloides) and chimpanzees in various tasks testing physical cognition indicates that their appreciation of these problems lies somewhere between a high-level understanding of the physical principles and low-level appreciation based on associative learning (Tomasello & Call, 1997; Bluff et al., 2007; Emery & Clayton, 2009; Taylor et al., 2009).

Type
Chapter
Information
Tool Use in Animals
Cognition and Ecology
, pp. 134 - 158
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aisner, R. & Terkel, J. (1992). Ontogeny of pine cone opening behaviour in black rats, Rattus rattus. Animal Behaviour, 214, 327–336.CrossRefGoogle Scholar
Alcock, J. (1972). The evolution of the use of tools by feeding animals. Evolution, 26, 464–773.CrossRefGoogle ScholarPubMed
Bateson, P. (2004). The active role of behaviour in evolution. Biology and Philosophy, 19, 283–298.CrossRefGoogle Scholar
Beck, B. (1980). Animal Tool Behavior: The Use and Manufacture of Tools by Animals. New York: Garland STPM Press.Google Scholar
Bird, C. & Emery, N. (2009). Insightful problem solving and creative tool modification by captive rooks. Proceedings of the National Academy of Sciences USA, 106, 10370–10375.CrossRefGoogle Scholar
Bluff, L. A., Weir, A. A. S., Rutz, C., Wimpenny, J. H. & Kacelnik, A. (2007). Tool-related cognition in New Caledonian crows. Comparative Cognition and Behavior Reviews, 2, 1–25.Google Scholar
Bowman, R. I. & Billeb, S. L. (1965). Blood-eating in a Galápagos finch. The Living Bird, 4, 29–44.Google Scholar
Chaffer, N. (1945). The spotted and satin bower-birds: a comparison. Emu, 44, 161–181.CrossRefGoogle Scholar
Chappell, J. (2006). Avian cognition: understanding tool use. Current Biology, 16, R244.CrossRefGoogle ScholarPubMed
Chappell, J. & Kacelnik, A. (2002). Tool selectivity in a non-primate, the New Caledonian crow (Corvus moneduloides). Animal Cognition, 5, 71–78.CrossRefGoogle Scholar
Curio, E. & Kramer, P. (1964). Vom Mangrovenfinken (Cactospiza heliobates Snodgrass und Heller). Zeitschrift f. Tierpsychologie, 21, 223–234.CrossRefGoogle Scholar
DeBenedictis, P. A. (1966). The bill-brace feeding behavior of the Galapagos finch Geospiza conirostris. Condor, 68, 206–208.CrossRefGoogle Scholar
Eibl-Eibesfeldt, I. (1961). Über den Werkzeuggebrauch des Spechtfinken Camarhynchus pallidus (Slater und Slavin). Zeitschrift f. Tierpsychologie, 18, 343–346.CrossRefGoogle Scholar
Eibl-Eibesfeldt, I. & Sielman, H. (1962). Beobachtungen am Spechtfinken Cactospiza pallida (Sclater und Salvin). Journal of Ornithology, 103, 92–101.CrossRefGoogle Scholar
Eibl-Eibesfeldt, I. & Sielman, H. (1965). Werkzeuggebrauch beim Nahrungserwerb. Encyclopedia Cinematographica, E597 Publikationen zum wissenschaftlichen Film, 1(A), 385–390.Google Scholar
Emery, N. J. & Clayton, N. S. (2009). Tool use and physical cognition in birds and mammals. Current Opinion in Neurobiology, 19, 27–33.CrossRefGoogle ScholarPubMed
Fessl, B., Loaiza, A. D., Tebbich, S. & Glyn Young, H. (2011). Feeding and nesting requirements of the critically endangered mangrove finch (Camarhynchus heliobates). Journal of Ornithology, 152(2), 453–460.CrossRefGoogle Scholar
Goodall, J. (1986). The Chimpanzees of Gombe. Cambridge, MA: Harvard University Press.Google Scholar
Grant, P. R. (1985). Climatic fluctuations on the Galápagos Islands and their influence on Darwin’s finches. Ornithological Monographs, 36, 471–483.CrossRefGoogle Scholar
Grant, P. R. (1986). Ecology and Evolution of Darwin’s Finches. Princeton, NJ: Princeton University Press.Google Scholar
Grant, P. R. (1999). Ecology and Evolution of Darwin’s Finches. 2nd edn. Princeton, NJ: Princeton University Press.Google Scholar
Grant, P. R. & Boag, P. T. (1980). Rainfall on the Galápagos and the demography of Darwin’s finches. Auk, 97, 227–244.Google Scholar
Grant, P. R. & Grant, R. B. (2008). How and Why Species Multiply: The Radiation of Darwin`s Finches. Princeton, NJ: Princeton University Press.Google Scholar
Hamann, O. (1981). Plant communities of the Galápagos Islands. Dansk Botanisk Archiv, 34, 1–63.Google Scholar
Hansell, M. & Ruxton, G. D. (2008). Setting tool use within the context of animal construction behaviour. Trends in Ecology and Evolution, 23, 73–78.CrossRefGoogle ScholarPubMed
Hardy, A. (1965). The Living Stream. London: Collins.Google Scholar
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Hauser, M. D. (1997). Artifactual kinds and functional design features: what a primate understands without language. Cognition, 64, 285–308.CrossRefGoogle ScholarPubMed
Hladik, C. M. (1977). Chimpanzees of Gabon and chimpanzees of Gombe: some comparative data on the diet. In Clutton-Brock, T. H. (ed.) Primate Ecology (pp. 481–501). New York: Academia Press.Google Scholar
Holzhaider, J. C., Hunt, G. R. & Gray, R. D. (2010a). The development of pandanus tool manufacture in wild New Caledonian crows. Behaviour, 147, 553–586.CrossRefGoogle Scholar
Holzhaider, J. C., Hunt, G. R. & Gray, R. D. (2010b). Social learning in New Caledonian crows. Learning and Behavior, 38, 206–219.CrossRefGoogle ScholarPubMed
Hundley, M. H. (1963). Notes on methods of feeding and the use of tools in the Geospizinae. Auk, 80, 372–373.Google Scholar
Hunt, G. R. (1996). Manufacture and use of hook-tools by New Caledonian crows. Nature, 379, 249–251.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2002). Species-wide manufacture of stick-type tools by New Caledonian crows. Emu, 102, 349–353.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2004a). The crafting of hook tools by wild New Caledonian crows. Proceedings of the Royal Society of London B: Biological Sciences, 271, S88–S90.CrossRefGoogle ScholarPubMed
Hunt, G. R. & Gray, R. D. (2004b). Direct observations of pandanus-tool manufacture and use by a New Caledonian crow (Corvus moneduloides). Animal Cognition, 7, 114–120.CrossRefGoogle Scholar
Kacelnik, A. (2009). Tools for thought or thoughts for tools?. Proceedings of the National Academy of Sciences USA, 106, 10071–10072.CrossRefGoogle ScholarPubMed
Kenward, B., Weir, A. A. S., Rutz, C. & Kacelnik, A. (2005). Tool manufacture by naive juvenile crows. Nature, 433, 121.CrossRefGoogle ScholarPubMed
Kenward, B., Rutz, C., Weir, A. A. S. & Kacelnik, A. (2006). Development of tool use in New Caledonian crows: inherited action patterns and social influence. Animal Behaviour, 72, 1329–1343.CrossRefGoogle Scholar
Kenward, B., Schloegl, C. & Rutz, C. (2011). On the evolutionary and ontogenetic origins of tool-oriented behaviour in New Caledonian crows (Corvus moneduloides). Biological Journal of the Linnean Society, 102, 870–877.CrossRefGoogle Scholar
Laland, K. & Sterelny, K. (2006). Perspective: seven reasons (not) to neglect niche construction. Evolution, 60, 1751–1762.CrossRefGoogle ScholarPubMed
Limongelli, L., Boysen, S. T. & Visalberghi, E. (1995). Comprehension of cause–effect relations in a tool-using task by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 109, 18–26.CrossRefGoogle Scholar
MacFarland, C. & Reeder, W. (1974). Cleaning symbiosis involving Galápagos tortoise and two species of Darwin’s finches. Zeitschrift für Tierpsyhologogie, 34, 464–483.CrossRefGoogle Scholar
Mann, J. S. B., Watson-Capps, J. J., Gibson, Q. A., et al. (2008). Why do dolphins carry sponges?Plos ONE, 3, 3868.CrossRefGoogle ScholarPubMed
Millikan, G. C. & Bowman, R. I. (1967). Observations on Galápagos tool-using finches in captivity. Living Bird, 6, 23–41.Google Scholar
Mulcahy, N. J. & Call, J. (2006). How great apes perform on a modified trap-tube task. Animal Cognition, 9, 193–199.CrossRefGoogle ScholarPubMed
Mulcahy, N. J., Call, J. & Dunbar, R. (2005). Gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) encode relevant problem features in a tool-using task. Journal of Comparative Psychology, 119, 23–32.CrossRefGoogle Scholar
Nagell, K., Olguin, R. S. & Tomasello, M. (1993). Processes of social learning in the tool use of chimpanzees (Pan troglodytes) and human children (Homo sapiens). Journal of Comparative Psychology, 107, 174–186.CrossRefGoogle Scholar
Nicolakakis, N. & Lefebvre, L. (2000). Forebrain size and innovation rate in European birds: feeding, nesting and confounding variables. Behaviour, 137, 1415–1429.CrossRefGoogle Scholar
Nishida, T. & Hiraiwa, M. (1982). Natural history of a tool-using behaviour by wild chimpanzees in feeding upon wood-boring ants. Journal of Human Evolution, 11, 73–99.CrossRefGoogle Scholar
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Orenstein, R. I. (1972). Tool-use by the New Caledonian crow (Corvus moneduloides). Auk, 89, 674–676.Google Scholar
Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. (2009). Technical innovations drive the relationship between innovativeness and residual brain size in birds. Animal Beahviour, 78, 1001–1010.CrossRefGoogle Scholar
Parker, S. T. & Gibson, K. R. (1977). Object manipulation, tool use and sensomotor intelligence as feeding adaptations in cebus monkeys and great apes. Journal of Human Evolution, 6, 623–641.CrossRefGoogle Scholar
Penn, D. C. & Povinelli, J. P. (2007). Causal cognition in humans and nonhuman animals: a comparative critical review. Annual Review of Psychology, 58, 97–118.CrossRefGoogle ScholarPubMed
Povinelli, D. J. (2000). Folk Physics for Apes: A Chimpanzee’s Theory of How the World Works. Oxford: Oxford University Press.Google Scholar
Price, T. (2008). Speciation in Birds. Greenwood Village, CO: Roberts & Company Publishers.Google Scholar
Rutz, C. & Clair, J. (in press). The evolutionary origins and ecological context of tool use in New Caledonian crows. Behavioral Processes.
Rutz, C., Bluff, L. A., Weir, A. A. S. & Kacelnik, A. (2007). Video cameras on wild birds. Science, 318, 765.CrossRefGoogle ScholarPubMed
Rutz, C., Bluff, L. A., Reed, N., et al. (2010). The ecological significance of tool use in New Caledonian crows. Science, 329, 1523–1526.CrossRefGoogle ScholarPubMed
Santos, L. R., Pearson, H., Spaepen, G. M., Tsao, F. & Hauser, M. D. (2006). Probing the limits of tool competence: experiments with two non-tool-using species (Cercopithecus aethiops and Saguinus oedipus). Animal Cognition, 9, 94–109.CrossRefGoogle Scholar
Schluter, D. (1984). Feeding correlates of breeding and social organization in two Galápagos finches. Auk, 101, 59–68.Google Scholar
Seed, A. M., Tebbich, S., Emery, N. & Clayton, N. S. (2006). Investigating physical cognition in rooks (Corvus frugilegus). Current Biology, 16, 697–701.CrossRefGoogle Scholar
Seed, A. M., Call, J., Emery, N. J. & Clayton, N. S. (2009). Chimpanzees solve the trap problem when the confound of tool-use is removed. Journal of Experimental Psychology: Animal Behaviour Processes, 35, 23–34.Google ScholarPubMed
Silva, F. J., Page, D. M. & Silva, K. M. (2005). Methodological-conceptual problems on the study of chimpanzees’ folk physics: how studies with adult humans can help. Learning and Behaviour, 32, 47–58.CrossRefGoogle Scholar
Sol, D. (2003). Behavioural Flexibility: A Neglected Issue in the Ecological and Evolutionary Literature?Oxford: Oxford University Press.Google Scholar
Sol, D., Stirling, D. G. & Lefebvre, L. (2005). Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution, 59, 2669–2677.CrossRefGoogle ScholarPubMed
Taylor, A., Hunt, G., Medina, F. & Gray, R. (2009). Do New Caledonian crows solve physical problems through causal reasoning?Proceedings of the Royal Society of London B: Biological Sciences, 276, 247–254.CrossRefGoogle ScholarPubMed
Tebbich, S. & Bshary, R. (2004). Cognitive abilities related to tool use in the woodpecker finch, Cactospiza pallida. Animal Behaviour, 67, 689–697.CrossRefGoogle Scholar
Tebbich, S., Taborsky, M., Fessl, B. & Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning?Proceedings of the Royal Society of London B: Biological Sciences, 268, 2189–2193.CrossRefGoogle ScholarPubMed
Tebbich, S., Taborsky, M., Fessl, B. & Dvorak, M. (2002). The ecology of tool-use in the woodpecker finch (Cactospiza pallida). Ecology Letters, 5, 656–664.CrossRefGoogle Scholar
Tebbich, S., Taborsky, M., Fessl, B., Dvorak, M. & Winkler, H. (2004). Feeding behavior of four arboreal Darwin’s finches: adaptations to spatial and seasonal variability. Condor, 106, 95–105.CrossRefGoogle Scholar
Tebbich, S., Seed, A. M., Emery, N. & Clayton, N. S. (2007). Non-tool-using rooks (Corvus frugilegus) solve the trap-tube task. Animal Cognition, 10, 225–231.CrossRefGoogle Scholar
Tebbich, S., Sterelny, K. & Teschke, I. (2010). The finches’ tale: adaptive radiation and behavioural flexibility. Philosophical Transactions of the Royal Scociety of London B, 365, 1099–1109.CrossRefGoogle Scholar
Teschke, I. & Tebbich, S. (2011). Physical cognition and tool-use: performance of Darwin’s finches in the two-trap tube task. Animal Cognition, 14, 555–563.CrossRefGoogle ScholarPubMed
Teschke, I., Cartmill, E., Stankewitz, S. & Tebbich, S. (2011). Sometimes tool-use is not the key: no evidence for cognitive adaptive specializations in tool-using woodpecker finches. Animal Behaviour, 82, 945–956.CrossRefGoogle Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
Tomasello, M. & Call, J. (1997). Tools and causality. In Call, J. (ed.) Primate Cognition (pp. 57–99). New York: Oxford University Press.Google Scholar
Tomasello, M., Davis-Dasilva, M. & Camak, L. (1987). Observational learning of tool-use by young chimpanzees. Human Evolution, 2, 175–183.CrossRefGoogle Scholar
van Lawick-Goodall, J. & van Lawick-Goodall, H. (1966). Use of tools by the Egyptian vulture, Neophron percnopterus. Nature, 212, 1468–1469.CrossRefGoogle Scholar
Visalberghi, E. & Limongelli, L. (1994). Lack of comprehension of cause–effect relations in tool-using capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 108, 15–22.CrossRefGoogle Scholar
Visalberghi, E., Fragaszy, D. M. & Savage-Rumbaugh, S. (1995). Performance in a tool-using task by common chimpanzees (Pan troglodytes), bonobos (Pan paniscus), an orangutan (Pongo pygmaeus), and capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 109, 52–60.CrossRefGoogle Scholar
Walsh, J. F., Grunewald, J. & Grunewald, B. (1985). Green-backed herons (Butorides striatus) possibly using a lure and using apparent bait. Journal of Ornithology, 126, 439–442.CrossRefGoogle Scholar
West-Eberhard, M. (2003). Developmental Plasticity and Evolution. Oxford: Oxford University Press.Google Scholar
Whiten, A., Custance, D. M., Gomez, J.-C., Teixidor, P. & Bard, K. A. (1996). Imitative learning of artificial fruit processing in children (Homo sapiens) and chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 110, 3–14.CrossRefGoogle Scholar
Yamakoshi, G. (1998). Dietary responses to fruit scarcity of wild chimpanzees at Bossou, Guinea: possible implications for ecological importance of tool use. American Journal of Physical Anthropology, 106, 283–295.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Zohar, O. & Terkel, Y. (1991). Acquisition of pine cone stripping behaviour in black rats. International Journal of Comparative Psychology, 5, 1–5.Google Scholar
Zohar, O. & Terkel, J. (1996). Social and environmental factors modulate the learning of pine-cone stripping techniques by black rats, Rattus rattus. Animal Behaviour, 51, 611–618.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×