Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-24T19:18:00.696Z Has data issue: false hasContentIssue false

13 - Perspectives on stone tools and cognition in the early Paleolithic record

from Part IV - Archaeological perspectives

Published online by Cambridge University Press:  05 March 2013

Crickette M. Sanz
Affiliation:
Washington University, St Louis
Josep Call
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Get access

Summary

Introduction

Cognitive archaeology is an unsettling area of study for many archaeologists, and it is unsurprising given the incredible challenges in taking the static remains of past people, most of them from a species separate from our own, and saying something about the processes of the mind that led to those remains. The attraction, however, remains great. As the chapters of this volume show, similarly challenging questions are being asked especially of extant primates, but also interestingly a variety of other living species, with experiments and field observations cleverly designed to probe into what these animals know about what they are doing. Archaeology has the potential to provide some insights into the evolutionary context of the modern cognitive condition, certainly for hominins who for 2.6 million years have left behind a record of their tool use, but also perhaps in a more limited fashion for non-human primates (Haslam et al., 2009).

Of course, the modern human cognitive condition is easily experienced but very difficult to conceptualize, and these difficulties carry over into cognitive archaeology. Wynn (2009), while noting that the field is characterized by a diverse set of theoretical underpinnings, argues that evolutionary cognitive archaeology has been approached from three principle perspectives: the relationship between language and the mind; the relationship between the organization and context of actions and the mind; and representational theories of the mind based on cognitive psychology and neurosciences that look at how the brain actually works. If we ignore the methodological and theoretical debates within the cognitive sciences, as well as issues of communication between two different fields (i.e., archaeology and cognitive sciences), there are still significant hurdles. How does archaeology, a field that depends heavily on theoretical contributions from other fields, operationalize theoretical approaches in testable ways? This is especially the case for the Plio-Pleistocene archaeological record, which is limited in scope and dramatically different from data sets produced in the cognitive sciences. As part of this operationalization, often cognitive approaches to the archaeological record risk not adequately taking into consideration some of the unique properties of this record and especially of stone tools.

Type
Chapter
Information
Tool Use in Animals
Cognition and Ecology
, pp. 286 - 309
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asfaw, B., Beyene, Y., Suwa, G., et al. (1992). The earliest Acheulean from Konso-Gardula. Nature, 360, 732–735.CrossRefGoogle ScholarPubMed
Ashton, N. & White, M. J. (2003). Bifaces and raw materials: flexible flaking in the British Early Paleolithic. In Soressi, M. & Dibble, H. (eds.) From Prehistoric Bifaces to Human Behavior: Multiple Approaches to the Study of Bifacial Technology (pp. 109–124). Philadelphia, PA: University of Pennsylvania Museum Press.Google Scholar
Bamforth, D. B. (1988). Investigating microwear polishes with blind tests: the institute results in context. Journal of Archaeological Science, 15(1), 11–23.CrossRefGoogle Scholar
Bar-Yosef, O. & van Peer, P. (2009). The chaîne opératoire approach in Middle Paleolithic archaeology. Current Anthropology, 50(1), 103–131.CrossRefGoogle Scholar
Baumler, M. F. (1988). Core reduction, flake production, and the Middle Paleolithic industry of Zobiste (Yugoslavia). In Dibble, H. L & Montet-White, A. (eds.) Upper Pleistocene Prehistory of Western Eurasia (pp. 255–274). Philadelphia, PA: University of Pennsylvania Museum Press.Google Scholar
Blumenschine, R. J., Peters, C. R., Masao, F. T., et al. (2003). Late Pliocene Homo and hominid land use from western Olduvai Gorge, Tanzania. Science, 299(5610), 1217.CrossRefGoogle ScholarPubMed
Blumenschine, R. J., Prassack, K. A., Kreger, C. D. & Pante, M. C. (2007). Carnivore tooth-marks, microbial bioerosion, and the invalidation of test of Oldowan hominin scavenging behavior. Journal of Human Evolution, 53(4), 420–426.CrossRefGoogle ScholarPubMed
Bordes, F. (1961). Typologie du Paléolithique ancien et moyen. Bordeaux: Imprimeries Delmas.Google Scholar
Brantingham, P. J. & Kuhn, S. L. (2001). Constraints on Levallois core technology: a mathematical model. Journal of Archaeological Science, 28(7), 747–761.CrossRefGoogle Scholar
Braun, D. R. (2010). Palaeoanthropology: Australopithecine butchers. Nature, 466(7308), 828.CrossRefGoogle ScholarPubMed
Braun, D. R. & Harris, J. W. (2003). Technological developments in the Oldowan of Koobi Fora: innovative techniques of artifact analysis. In Moreno, J. Martinez, Mora, R. & de la Torre Sainz, I. (eds.) Oldowan: Rather More Than Smashing Stones (pp. 117–144). Bellaterra: Universitat Autònoma de Barcelona.Google Scholar
Braun, D. R. & Hovers, E. (2009). Introduction: current issues in Oldowan research. In Hovers, E. & Braun, D. R. (eds.) Interdisciplinary Approaches to the Oldowan (pp. 1–14). Dordrecht: Springer.Google Scholar
Braun, D. R., Tactikos, J. C., Ferraro, J. V. & Harris, J. W. K. (2005). Flake recovery rates and inferences of Oldowan hominin behavior: a response to Kimura, 1999 and Kimura, 2002. Journal of Human Evolution, 48(5), 525–531.CrossRefGoogle ScholarPubMed
Braun, D. R., Plummer, T., Ditchfield, P., et al. (2008). Oldowan behavior and raw material transport: perspectives from the Kanjera Formation. Journal of Archaeological Science, 35(8), 2329–2345.CrossRefGoogle Scholar
Braun, D. R., Harris, J. W. K. & Maina, D. N. (2009a). Oldowan raw material procurement and use: evidence from the Koobi Fora Formation. Archaeometry, 51(1), 26–42.CrossRefGoogle Scholar
Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P. & Bishop, L. C. (2009b). Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. Journal of Archaeological Science, 36(7), 1605–1614.CrossRefGoogle Scholar
Byrne, R. W. (2007). Culture in great apes: using intricate complexity in feeding skills to trace the evolutionary origin of human technical prowess. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 577–585.CrossRefGoogle ScholarPubMed
Callow, P. (1976). The Lower and Middle Palaeolithic of Britain and Adjacent Areas of Europe. Cambridge: Cambridge University Press.Google Scholar
Callow, P. (1986). A comparison of British and French Acheulian bifaces. In Collcutt, S. N. (ed.) The Palaeolithic of Britain and its Nearest Neighbours: Recent Trends (pp. 3–7). Sheffield: J.R. Collis Publications.Google Scholar
Calvin, W. (1993). The unitary hypothesis: a common neural circuitry for novel manipulations, language, plan-ahead, and throwing? In Gibson, K. R. & Ingold, T. (eds.) Tools, Language and Cognition in Human Evolution (pp. 230–250). Cambridge: Cambridge University Press.Google Scholar
Carbonell, E. & Mosquera, M. (2006). The emergence of a symbolic behaviour: the sepulchral pit of Sima de los Huesos, Sierra de Atapuerca, Burgos, Spain. Comptes Rendus Palevol, 5(1–2), 155–160.CrossRefGoogle Scholar
Carbonell, E., Mosquera, M., Ollé, A., et al. (2003). Les premiers comportements funéraires auraient-ils pris place à Atapuerca, il y a 350 000 ans?L’Anthropologie, 107(1), 1–14.CrossRefGoogle Scholar
Carbonell, E., Sala, R., Barsky, D. & Celiberti, V. (2009). From homogeneity to multiplicity: a new approach to the study of archaic stone tools. In Hovers, E. & Braun, D. R. (eds.) Interdisciplinary Approaches to the Oldowan (pp. 25–38). Dordrecht: Springer.CrossRefGoogle Scholar
Claud, E. (2010). La tracéologie appliquée à l’étude du site de Chez Pinaud (Charente-Maritime). In Buisson-Catil, J. & Primault, J. (eds.) Préhistoire entre Vienne et Charente: Hommes et societies du Paléolithique (pp. 122–126). Chauvigny: Association des Publications Chauvinoises.Google Scholar
Crompton, R. H. & Gowlett, J. A. J. (1993). Allometry and multidimensional form in Acheulean bifaces from Kilombe, Kenya. Journal of Human Evolution, 25(3), 175–199.CrossRefGoogle Scholar
Davidson, I. & Noble, W. (1993). Tools and language in human evolution. In Gibson, K. R. & Ingold, T. (eds.) Tools, Language and Cognition in Human Evolution (pp. 363–388). Cambridge: Cambridge University Press.Google Scholar
de Heinzelin, J., Clark, J. D., White, T., et al. (1999). Environment and behavior of 2.5-million-year-old Bouri hominids. Science, 284(5414), 625–629.CrossRefGoogle ScholarPubMed
de la Torre, I. & Mora, R. (2009). Remarks on the current theoretical and methodological approaches to the study of technological strategies of early humans in Eastern Africa. In Hovers, E. & Braun, D. R. (eds.) Interdisciplinary Approaches to the Oldowan (pp. 15–24). Dordrecht: Springer.CrossRefGoogle Scholar
Delagnes, A. & Roche, H. (2005). Late Pliocene hominid knapping skills: the case of Lokalalei 2C, West Turkana, Kenya. Journal of Human Evolution, 48(5), 435–472.CrossRefGoogle ScholarPubMed
Dibble, H. L. (1995). Middle Paleolithic scraper reduction: background, clarification, and review of the evidence to date. Journal of Archaeological Method and Theory, 2(4), 299–368.CrossRefGoogle Scholar
Dibble, H. L & Rezek, Z. (2009). Introducing a new experimental design for controlled studies of flake formation: results for exterior platform angle, platform depth, angle of blow, velocity, and force. Journal of Archaeological Science, 36(9), 1945–1954.CrossRefGoogle Scholar
Domínguez-Rodrigo, M. & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50(2), 170–194.CrossRefGoogle ScholarPubMed
Domínguez-Rodrigo, M., Serrallonga, J., Juan-Tresserras, J., Alcala, L. & Luque, L. (2001). Woodworking activities by early humans: a plant residue analysis on Acheulian stone tools from Peninj (Tanzania). Journal of Human Evolution, 40(4), 289–299.CrossRefGoogle Scholar
Domínguez-Rodrigo, M., de Juana, S., Galán, A. B. & Rodríguez, M. (2009). A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science, 36(12), 2643–2654.CrossRefGoogle Scholar
Domínguez-Rodrigo, M., Pickering, T. R. & Bunn, H. T. (2010). Configurational approach to identifying the earliest hominin butchers. Proceedings of the National Academy of Sciences USA, 107(49), 20929–20934.CrossRefGoogle ScholarPubMed
Gargett, R. H. (1989). Grave shortcomings: the evidence for neandertal burial (and comments and reply). Current Anthropology, 30(2), 157–190.CrossRefGoogle Scholar
Goldman-Neuman, T. & Hovers, E. (2009). Methodological issues in the study of Oldowan raw material selectivity: insights from A.L. 894 (Hadar, Ethiopia). In Hovers, E. & Braun, D. R. (eds.) Interdisciplinary Approaches to the Oldowan (pp. 71–84). Dordrecht: Springer.CrossRefGoogle Scholar
Goodyear, A. C. (1974). The Brand Site: A Techno-Functional Study of a Dalton Site in Northeast Arkansas. Fayetteville, NC: Arkansas Archeological Survey.Google Scholar
Gowlett, J. A. J. (2009). Artefacts of apes, humans, and others: towards comparative assessment and analysis. Journal of Human Evolution, 57(4), 401–410.CrossRefGoogle ScholarPubMed
Gowlett, J. A. J. & Crompton, R. H. (1994). Kariandusi: Acheulean morphology and the question of allometry. African Archaeological Review, 12(1), 3–42.CrossRefGoogle Scholar
Harmand, S. (2009). Variability in raw material selectivity at the Late Pliocene sites of Lokalalei, West Turkana, Kenya. In Hovers, E. & Braun, D. R. (eds.) Interdisciplinary Approaches to the Oldowan (pp. 85–98). Dordrecht: Springer.CrossRefGoogle Scholar
Haslam, M., Hernandez-Aguilar, A., Ling, V., et al. (2009). Primate archaeology. Nature, 460(7253), 339–344.CrossRefGoogle ScholarPubMed
Hay, R. L. (1976). Geology of the Olduvai Gorge. Berkeley, CA: University of California Press.Google Scholar
Hayden, B. (1989). From chopper to celt: the evolution of resharpening techniques. In Torrence, R. (ed.) Time, Energy and Stone Tools (pp. 7–16). Cambridge: Cambridge University Press.Google Scholar
Hayden, B. & Villeneuve, S. (2009). Sex, symmetry and silliness in the bifacial world. Antiquity, 83(322), 1163–1170.CrossRefGoogle Scholar
Hodgson, D. (2009). Symmetry and humans: reply to Mithen’s “Sexy Handaxe Theory.”Antiquity, 83(319), 195–198.CrossRefGoogle Scholar
Hoffman, C. M. (1985). Projectile point maintenance and typology: assessment with factor analysis and canonical correlation. In Carr, C. (ed.) For Concordance in Archaeological Analysis (pp. 566–612). Kansas City, MI: Westport Publishers.Google Scholar
Hovers, E. & Braun, D. R. (eds.) (2009). Interdisciplinary Approaches to the Oldowan. Dordrecht: Springer.CrossRef
Iovita, R. & McPherron, S. P. (2011). The handaxe reloaded: a morphometric reassessment of Acheulian and Middle Paleolithic handaxes. Journal of Human Evolution, 61(1), 61–74.CrossRefGoogle ScholarPubMed
Isaac, G. L. (1977). Olorgesailie: Archeological Studies of a Middle Pleistocene Lake Basin in Kenya. Chicago, IL: University of Chicago Press.Google Scholar
Jones, P. R. (1980). Experimental butchery with modern stone tools and its relevance for Palaeolithic archaeology. World Archaeology, 12(2), 153–165.CrossRefGoogle Scholar
Keeley, L. H. (1980). Experimental Determination of Stone Tool Uses: A Microwear Analysis. Chicago, IL: University of Chicago Press.Google Scholar
Kimura, Y. (2002). Examining time trends in the Oldowan technology at Beds I and II, Olduvai Gorge. Journal of Human Evolution, 43(3), 291–321.CrossRefGoogle ScholarPubMed
Kohn, M. & Mithen, S. (1999). Handaxes: products of sexual selection?Antiquity, 73, 518–526.CrossRefGoogle Scholar
Le Tensorer, J. M. (2006). Les cultures acheuléenes et la question de l’émergence de la pensée symbolique chez Homo erectus à partir des données relatives à la forme symétrique et harmonique des bifaces. Academie des Sciences: Comptes Rendus. Palevol, 5(1–2), 127–135.Google Scholar
Le Tensorer, J. M. (2009). L’image avant l’image: réflexions sur le colloque. L’Anthropologie, 113(5), 1005–1017.CrossRefGoogle Scholar
Lepre, C. J., Roche, H., Kent, D. V., et al. (2011). An earlier origin for the Acheulian. Nature, 477(7362), 82–85.CrossRefGoogle ScholarPubMed
Leroi-Gourhan, A. (1993). Gesture and Speech. Cambridge, MA: MIT Press.Google Scholar
Lycett, S. J. (2008). Acheulean variation and selection: does handaxe symmetry fit neutral expectations?Journal of Archaeological Science, 35(9), 2640–2648.CrossRefGoogle Scholar
Lycett, S. J. (2009). Understanding ancient hominin dispersals using artefactual data: a phylogeographic analysis of Acheulean handaxes. PloS ONE, 4(10), e7404.CrossRefGoogle ScholarPubMed
Lycett, S. J. & von Cramon-Taubadel, N. (2008). Acheulean variability and hominin dispersals: a model-bound approach. Journal of Archaeological Science, 35(3), 553–562.CrossRefGoogle Scholar
Machin, A. J. (2008). Why handaxes just aren’t that sexy: a response to Kohn & Mithen (1999). Antiquity, 82(317), 761–766.CrossRefGoogle Scholar
Machin, A. J., Hosfield, R. T. & Mithen, S. J. (2007). Why are some handaxes symmetrical? Testing the influence of handaxe morphology on butchery effectiveness. Journal of Archaeological Science, 34(6), 883–893.CrossRefGoogle Scholar
McCall, G. S. & Whittaker, J. (2007). Handaxes still don’t fly. Lithic Technology, 32(2), 195–203.CrossRefGoogle Scholar
McPherron, S. P. (1999). Ovate and pointed handaxe assemblages: two points make a line. Préhistoire Européenne, 14, 9–32.Google Scholar
McPherron, S. P. (2000). Handaxes as a measure of the mental capabilities of early hominids. Journal of Archaeological Science, 27, 655–663.CrossRefGoogle Scholar
McPherron, S. P. (2003). Typological and technological variability in the bifaces from Tabun Cave, Israel. In Soressi, M. & Dibble, H. (eds.) From Prehistoric Bifaces to Human Behavior: Multiple Approaches to the Study of Bifacial Technology (pp. 55–76). Philadelphia, PA: University of Pennsylvania Museum Press.Google Scholar
McPherron, S. P. (2007a). What typology can tell us about Acheulian handaxe production. In Goren-Inbar, N. & Sharon, G. (eds.) Axe Age: Acheulian Toolmaking, from Quarry to Discard (pp. 267–286). Indonesia: Equinox Publishing.Google Scholar
McPherron, S. P. (ed.). (2007b). Tool v. Core: New Approaches in the Analysis of Stone Tool Assemblages. Cambridge: Cambridge Scholars Publications.
McPherron, S. P., Alemseged, Z., Marean, C. W., et al. (2010). Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature, 466(7308), 857–860.CrossRefGoogle ScholarPubMed
Mitchell, J. C. (1996). Studying biface utilization at Boxgrove: roe deer butchery with replica handaxes. Lithics, 16, 64–69.Google Scholar
Newcomer, M., Grace, R. & Unger-Hamilton, R. (1986). Investigating microwear polishes with blind tests. Journal of Archaeological Science, 13(3), 203–217.CrossRefGoogle Scholar
Njau, J. K. & Blumenschine, R. J. (2006). A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. Journal of Human Evolution, 50(2), 142–162.CrossRefGoogle ScholarPubMed
Noble, W. & Davidson, I. (1996). Human Evolution, Language and Mind. Cambridge: Cambridge University Press.Google Scholar
Norton, C. J., Bae, K., Harris, J. W. K. & Lee, H. (2006). Middle Pleistocene handaxes from the Korean Peninsula. Journal of Human Evolution, 51(5), 527–536.CrossRefGoogle ScholarPubMed
Nowell, A. & Chang, M. L. (2009). The case against sexual selection as an explanation of handaxe morphology. PaleoAnthropology, 2009, 77–88.Google Scholar
Nowell, A., Park, K., Metaxas, D. & Park, J. (2003). Deformation modeling: a methodology for the analysis of handaxe morphology and variability. In Soressi, M. & Dibble, H. L. (eds.) Multiple Approaches to the Study of Bifacial Technologies (pp. 193–208). Philadelphia, PA: University of Pennsylvania Museum of Archaeology and Anthropology.Google Scholar
O’Brien, E. M. (1981). The projectile capabilities of an Acheulian handaxe from Olorgesailie. Current Anthropology, 22(1), 76–79.CrossRefGoogle Scholar
Panger, M. A., Brooks, A. S., Richmond, B. G. & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.CrossRefGoogle Scholar
Plummer, T. (2004). Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Yearbook of Physical Anthropology, 47, 118–164.CrossRefGoogle Scholar
Pope, M. & Roberts, M. (2005). Observations on the relationship between Palaeolithic individuals and artefact scatters at the Middle Pleistocene site of Boxgrove, UK. In Gamble, C. & Porr, M. (eds.) The Hominid Individual in Context: Archaeological Investigations of Lower and Middle Palaeolithic Landscapes, Locales, and Artefacts (pp. 81–97). London: Routledge.Google Scholar
Pope, M., Russel, K. & Watson, K. (2006). Biface form and structured behaviour in the Acheulian. Lithics, 27, 44–57.Google Scholar
Porr, M. (2005). The making of the biface and the making of the individual. In Gamble, C. & Porr, M. (eds.) The Hominid Individual in Context: Archaeological Investigations of Lower and Middle Palaeolithic Landscapes, Locales and Artefacts (pp. 68–80). London: Routledge.Google Scholar
Potts, R. (1988). Early Hominid Activities at Olduvai. New York: Aldine de Gruyter.Google Scholar
Rezek, Z., Lin, S., Iovita, R. & Dibble, H. L. (2011). The relative effects of core surface morphology on flake shape and other attributes. Journal of Archaeological Science, 38(6), 1346–1359.CrossRefGoogle Scholar
Roche, H. (2005). From simple flaking to shaping: stone-knapping evolution among early hominins. In Brill, B. & Roux, V. (eds.) Stone Knapping: The Necessary Conditions for a Uniquely Hominid Behaviour (pp. 35–52). Cambridge: McDonald Institute of Archaeological Research.Google Scholar
Roche, H., Blumenschine, R. J. & Shea, J. S. (2009). Origins and adaptations of early Homo: what archaeology tells us. In Grine, F. E., Fleagle, J. G. & Leakey, R. E. (eds.) The First Humans: Origin and Early Evolution of the Genus Homo (pp. 135–147). Dordrecht: Springer.CrossRefGoogle Scholar
Roe, D. A. (1968). British Lower and Middle Palaeolithic handaxe groups. Proceedings of the Prehistoric Society, 34, 1–82.CrossRefGoogle Scholar
Sanz, C., Call, J. & Morgan, D. (2009). Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes). Biology Letters, 5(3), 293–296.CrossRefGoogle Scholar
Saragusti, I., Sharon, I., Katzenelson, O. & Avnir, D. (1998). Quantitative analysis of the symmetry of artefacts: Lower Paleolithic handaxes. Journal of Archaeological Science, 25(8), 817–825.CrossRefGoogle Scholar
Saragusti, I., Karasik, A., Sharon, I. & Smilansky, U. (2005). Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. Journal of Archaeological Science, 32(6), 841–853.CrossRefGoogle Scholar
Schick, K. D. (1994). The Movius Line reconsidered: perspectives on the earlier Paleolithic of Eastern Asia. In Ciochon, R. L. & Corruccini, R. (eds.) Integrative Paths to the Past (pp. 569–596). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Schick, K. D & Toth, N. P. (1994). Making Silent Stones Speak: Human Evolution and the Dawn of Technology. New York: Simon & Schuster.Google Scholar
Schick, K. D. & Toth, N. (2006). An overview of the Oldowan industrial complex: the sites and the nature of their evidence. In Toth, N. & Schick, K. (eds.) The Oldowan: Case Studies into the Earliest Stone Age (pp. 3–42). Gosport, IN: Stone Age Institute Press.Google Scholar
Schick, K. D., Toth, N., Garufi, G., et al. (1999). Continuing investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 26(7), 821–832.CrossRefGoogle Scholar
Semaw, S., Renne, P., Harris, J. W. K., et al. (1997). 2.5-million-year-old stone tools from Gona, Ethiopia. Nature, 385(6614), 333–336.CrossRefGoogle ScholarPubMed
Semaw, S., Rogers, M. J., Quade, J., et al. (2003). 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 45(2), 169–177.CrossRefGoogle ScholarPubMed
Shott, M. J. (2003). Chaîne opératoire and reduction sequence. Lithic Technology, 28, 95–105.CrossRefGoogle Scholar
Sinclair, A. & McNabb, J. (2005). All in a day’s work: Middle Pleistocene individuals, materiality and the lifespace at Makapansgat, South Africa. In Gamble, C. & Porr, M. (eds.) The Hominid Individual in Context: Archaeological Investigations of Lower and Middle Palaeolithic Landscapes, Locales, and Artefacts (pp. 176–196). London: Routledge.Google Scholar
Soressi, M. & Geneste, J.-M. (2011). The history and efficacy of the chaine opératoire approach to lithic analysis: studying techniques to reveal past societies in an evolutionary perspective. PaleoAnthropology, 2011, 334–350.Google Scholar
Stout, D., Quade, J., Semaw, S., Rogers, M. J. & Levin, N. E. (2005). Raw material selectivity of the earliest stone toolmakers at Gona, Afar, Ethiopia. Journal of Human Evolution, 48(4), 365–380.CrossRefGoogle ScholarPubMed
Stout, D., Semaw, S., Rogers, M. J. & Cauche, D. (2010). Technological variation in the earliest Oldowan from Gona, Afar, Ethiopia. Journal of Human Evolution, 58(6), 474–491.CrossRefGoogle ScholarPubMed
Tostevin, G. B. (2003). A quest for antecedents: a comparison of the Terminal Middle Palaeolithic and Early Upper Palaeolithic of the Levant. In Goring-Morris, A. N. & Belfer-Cohen, A. (eds.) More Than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East (pp. 54–67). Oxford: Oxbow.Google Scholar
Tostevin, G. B. (2011). Special issue: reduction sequence, chaîne opératoire, and other methods – the epistemologies of different approaches to lithic analysis. Levels of theory and social practice in the reduction sequence and chaîne opératoire methods of lithic analysis. PaleoAnthropology, 2011, 351–375.Google Scholar
Toth, N. (1982). The Stone Age Technology of Early Hominids at Koobi Fora, Kenya: An Experimental Approach. Berkeley, CA: University of California Press.Google Scholar
Toth, N. (1987). Behavioral inferences from Early Stone artifact assemblages: an experimental model. Journal of Human Evolution, 16(7–8), 763–787.CrossRefGoogle Scholar
Toth, N. & Schick, K. D. (2006). The Oldowan: Case Studies into the Earliest Stone Age. Gosport, IN: Stone Age Institute Press.Google Scholar
White, M. J. (1998). Twisted ovate bifaces in the British Lower Palaeolithic: some observations and implications. In Ashton, N., Healy, F. & Pettit, P. (eds.) Stone Age Archaeology: Essays in Honour of John Wymer (pp. 98–104). Oxford: Oxbow Monograph.Google Scholar
Whiten, A., Schick, K. & Toth, N. (2009). The evolution and cultural transmission of percussive technology: integrating evidence from palaeoanthropology and primatology. Journal of Human Evolution, 57(4), 420–435.CrossRefGoogle ScholarPubMed
Wymer, J. (1968). Lower Palaeolithic Archaeology in Britain as Represented by the Thames Valley. London: John Baker Publishers Ltd.Google Scholar
Wynn, T. (1979). The intelligence of later Acheulean hominids. Man, New Series, 14(3), 371–391.CrossRefGoogle Scholar
Wynn, T. (1985). Piaget, stone tools and the evolution of human intelligence. World Archaeology, 17(1), 32–43.CrossRefGoogle ScholarPubMed
Wynn, T. (2002). Archaeology and cognitive evolution. Behavioral and Brain Sciences, 25, 389–438.CrossRefGoogle ScholarPubMed
Wynn, T. (2009). Whither evolutionary cognitive archaeology? Afterword. In de Beaume, S. A., Coolidge, F. L. & Wynn, T. (eds.) Cognitive Archaeology and Human Evolution (pp. 145–149). Cambridge: Cambridge University Press.Google Scholar
Wynn, T. & McGrew, W. C. (1989). An ape’s view of the Oldowan. Man, 24(3), 383–398.CrossRefGoogle Scholar
Wynn, T. & Tierson, F. (1990). Regional comparison of the shapes of later Acheulean handaxes. American Anthropologist, 92(1), 73–84.CrossRefGoogle Scholar
Yamei, H., Potts, R., Baoyin, Y., et al. (2000). Mid-Pleistocene Acheulean-like stone technology of the Bose Basin, South China. Science, 287(5458), 1622–1626.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×