Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T10:34:12.543Z Has data issue: false hasContentIssue false

5 - Mathematics as a Form of Communication

Published online by Cambridge University Press:  27 July 2009

Anna Sfard
Affiliation:
University of Haifa, Israel
Get access

Summary

The world for them is not a concourse of objects in space; it is a heterogeneous series of independent acts. … There are no nouns.

Jorge Luis Borges

To think is to forget differences.

Jorge Luis Borges

In this part of the book, I illustrate the workings of the commognitive approach by applying it to the special case of mathematical thinking. In so doing, my intention is to show what difference commognitive analysis makes in our interpretation of observed phenomena and in our practical decisions about teaching and learning. The discussion will eventually take me back to the dilemmas presented in chapter 1. The hope is that when scrutinized with the commognitive eye, at least some of the puzzles will be solved, whereas some others may disappear.

Being interested in learning, I focus in my analysis on the development of mathematical discourses of individuals, but I also refer to the historical development of mathematics whenever convinced that understanding this latter type of development may help in understanding the former. Considering the fact that communication is inherently collective, the term discourse of an individual or personal discourse may seem to be an oxymoron. Indeed, borrowing Ed Hutchins's words, one can say that those who equate human development with the development of discourses “move the boundaries of the cognitive analysis out beyond the skin of the individual person” and start speaking, instead, about teams of discourse participants as “commognitive systems.” Let me repeat then that thinking has been defined as self-communication.

Type
Chapter
Information
Thinking as Communicating
Human Development, the Growth of Discourses, and Mathematizing
, pp. 127 - 162
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×