Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T10:41:26.458Z Has data issue: false hasContentIssue false

7 - RNA

Published online by Cambridge University Press:  18 January 2010

Christian de Duve
Affiliation:
Rockefeller University, New York
Get access

Summary

It is generally accepted that RNA came before DNA in the origin of life. What we know of present-day life gives strong support to that contention. In all living organisms, DNA's sole function is to serve as the replicable repository of genetic instructions. When it comes to the execution of these instructions, RNA is the indispensable intermediary, occasionally as catalyst (ribozyme), most often as messenger (mRNA) for the synthesis of a protein that operates as the actual agent. DNA, in other words, can do nothing without RNA. In fact, DNA cannot even replicate without the prior formation of an RNA primer. RNA, on the other hand, while being the obligatory instrument of all forms of genetic expression, does, in addition, share with DNA the property of replicability. This property is not manifested in normal cells but is realized in cells infected by certain viruses, such as the polio virus. Thus, we arrive at the almost inevitable conclusion that RNA was first on the scene, acting in the storage and replication of early genetic information as well as in its expression, until DNA appeared and took over the first functions.

There are solid reasons to believe that RNA preceded proteins as well. This claim, again, rests on our knowledge of present-day life, which universally depends on RNA molecules – tRNAs, mRNAs, and rRNAs – for the synthesis of proteins.

Type
Chapter
Information
Singularities
Landmarks on the Pathways of Life
, pp. 66 - 87
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • RNA
  • Christian de Duve, Rockefeller University, New York
  • Book: Singularities
  • Online publication: 18 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614736.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • RNA
  • Christian de Duve, Rockefeller University, New York
  • Book: Singularities
  • Online publication: 18 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614736.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • RNA
  • Christian de Duve, Rockefeller University, New York
  • Book: Singularities
  • Online publication: 18 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614736.010
Available formats
×