Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T10:27:39.240Z Has data issue: false hasContentIssue false

6 - Fiber architecture, muscle function, and behavior: gluteal and hamstring muscles of semiterrestrial and arboreal guenons

Published online by Cambridge University Press:  10 August 2009

Fred Anapol
Affiliation:
Professor in the Department of Anthropology (adjunct in Biological Sciences) and the Director of the Center for Forensic Science University of Wisconsin–Milwaukee
Nazima Shahnoor
Affiliation:
Department of Anthropology, University of Wisconsin– Milwaukee, P.O. Box 413, Sabin Hall, Milwaukee, WI 53201, USA
J. Patrick Gray
Affiliation:
Department of Anthropology, University of Wisconsin– Milwaukee, P.O. Box 413, Sabin Hall, Milwaukee, WI 53201, USA
Fred Anapol
Affiliation:
University of Wisconsin, Milwaukee
Rebecca Z. German
Affiliation:
University of Cincinnati
Nina G. Jablonski
Affiliation:
California Academy of Sciences, San Francisco
Get access

Summary

Introduction

Charles Oxnard championed the use of statistical techniques to reduce a multitude of variables into a comprehendible pattern in order to demonstrate some aspect of primate behavior or evolution. In reality, Professor Oxnard's interests and writings have spanned an enormity and diversity of topics. By analogy, one might conclude that the “first principal component” of his work is reflected by the succinct statement on page 6 of his 1975 book, Uniqueness and Diversity in Human Evolution: “There is no doubt that the locomotor behavior of an animal is, on a gross level, controlled by the anatomy of the animal.” This point of departure for the research of many contributors to this volume, has influenced our own endeavor to understand how the internal morphology of a muscle itself, i.e., fiber architecture and histochemical fiber type composition, is associated with organ function and animal behavior. In this chapter, we consider the relationship of locomotor behavior, muscle function, and the fiber architecture of the gluteal and hamstring muscle groups.

Many classes of polymorphic variables determine the internal morphology of whole skeletal muscles. These include the relative composition of histo/immunocytochemical fiber types (see Chapter 7), neurological compartmentalization related to fascial partitioning (English, 1984) by the branching pattern of motoneurons (e.g., Herring et al., 1989, 1991), and the spatial arrangement of muscle fibers and tendons, otherwise known as fiber architecture (Gans and Bock, 1965; Gans, 1982; Richmond, 1998).

Type
Chapter
Information
Shaping Primate Evolution
Form, Function, and Behavior
, pp. 99 - 133
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. McN. (1974). The mechanics of jumping by a dog (Canis familiaris). J. Zool. Lond., 173, 549–573CrossRefGoogle Scholar
Alexander, R. McN. and Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissue. Nature, 265, 114–117CrossRefGoogle Scholar
Anapol, F. (1984). Morphological and functional diversity within the quadriceps femoris in Lemur fulvus: architectural, histochemical, and electromyographic considerations.Ph. D. thesis, State University of New York at Stony Brook
Anapol, F. (1988). Morphological and videofluorographic study of the hyoid apparatus and its function in the rabbit (Oryctolagus cuniculus). J. Morphol., 195, 141–157CrossRefGoogle Scholar
Anapol, F. (2003). Fiber architecture in primate limb muscles with new data for triceps surae in Eulemur fulvus. Amer. J. Phys. Anthropol. (Suppl. 36), 59Google Scholar
Anapol, F. and Barry, K. (1996). Fiber architecture of the extensors of the hindlimb in semiterrestrial and arboreal guenons. Amer. J. Phys. Anthropol., 99, 429–4473.0.CO;2-R>CrossRefGoogle ScholarPubMed
Anapol, F. and Bischoff, L. K. (1992). Comparative skeletal adaptations of Cercopithecus ascanius and C. aethiops to locomotor behavior. Amer. J. Phys. Anthropol. (Suppl. 14), 43Google Scholar
Anapol, F. and Gray, J. P. (2003). Fiber architecture of the intrinsic muscles of the shoulder and arm in semiterrestrial and arboreal guenons. Amer. J. Phys. Anthropol., 122, 51–65CrossRefGoogle ScholarPubMed
Anapol, F. and Herring, S. W. (1989). Length–tension relationships of masseter and digastric muscles of miniature swine during ontogeny. J. Exp. Biol., 143, 1–16Google ScholarPubMed
Anapol, F. and Jungers, W. L. (1986). Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus). Amer. J. Phys. Anthropol., 69, 355–375CrossRefGoogle Scholar
Anapol, F. (1987). Telemetered electromyography of the fast and slow extensors of the leg of the brown lemur (Lemur fulvus). J. Exp. Biol., 130, 341–358Google Scholar
Anapol, F., Muhl, Z. F., and Fuller, J. H. (1987). The force–velocity relation of the rabbit digastric muscle. Arch. Oral Biol., 32, 93–99CrossRefGoogle ScholarPubMed
Appleton, A. B. (1921). The gluteal region of Tarsius spectrum. Proc. Camb. Philos. Soc., 20, 466–474Google Scholar
Armstrong, R. B. (1980). Properties and distributions of the fiber types in the locomotory muscles of mammals. In: Comparative Physiology: Primitive Mammals, ed. K. Schmidt-Nielsen, L. Bolis, and C. R. Taylor. Cambridge: Cambridge University Press. pp. 243–254
Armstrong, R. B. and Phelps, R. O. (1984). Muscle fiber type composition of the rat hindlimb. Amer. J. Anat., 171, 259–272CrossRefGoogle ScholarPubMed
Armstrong, R. B., Sauber, C. W., Seeherman, H. J., and Taylor, C. R. (1982). Distribution of fiber types in locomotory muscles of dogs. Amer. J. Anat., 163, 87–98CrossRefGoogle ScholarPubMed
Ashton, E. H. and Oxnard, C. E. (1963). The musculature of the primate shoulder. Trans. Zool. Soc. Lond., 29, 553–650CrossRefGoogle Scholar
Benninghoff, A. and Rollhäuser, H. (1952). Zur inneren Mechanik des gefiederten Muskels. Pflugers Arch. Ges. Physiol., 254, 527–548CrossRefGoogle Scholar
Biewener, A. (1998). Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. Amer. Zool., 38, 703–717CrossRefGoogle Scholar
Biewener, A., Alexander, R. McN., and Heglund, N. C. (1981). Elastic energy storage in the hopping of kangaroo rats (Dipodomys spectabilis). J. Zool. Lond., 195, 369–383CrossRefGoogle Scholar
Biewener, A. and Baudinette, R. V. (1998). In vivo muscle force-length behavior during steady-speed hopping of tammar wallabies. J. Exp. Biol., 201, 1681–1694Google ScholarPubMed
Buchner, H. (1877). Kritische und experimentelle Studien über den Zusammenhalt des Hüftgelenks während des Lebens in allen normalen Fallen. Arch. Anat. Physiol., 1877, 22–45Google Scholar
Burke, R. E. and Edgerton, V. R. (1975). Motor unit properties and selective involvement in movement. Exerc. Spt. Sci. Rev., 3, 31–81Google ScholarPubMed
Cavagna, G. A. (1969). Travail mécanique dans la marche et la course. J. Physiol., Paris, 61, 3–42Google Scholar
Cavagna, G. A. and Kaneko, M. (1977). Mechanical work and efficiency in level walking and running. J. Physiol., 268, 467–481CrossRefGoogle ScholarPubMed
Cavagna, G. A., Citterio, G., and Jacini P. (1980). Elastic storage: role of tendons and muscles. In: Comparative Physiology: Primitive Mammals, ed. K. Schmidt-Nielsen, L. Bolis, and C. R. Taylor. Cambridge: Cambridge University Press. pp. 231–242
Disotell, T. R. (2000). Molecular systematics of the Cercopithecidae In: Old World Monkeys, ed. P. F. Whitehead and C. J. Jolly. Cambridge: Cambridge University Press. pp. 29–56CrossRef
Edgington, E. (1995). Randomization Tests. 3rd edn. New York, NY: Marcel Dekker
English, A. W. (1984). An electromyographic analysis of compartments in cat lateral gastrocnemius muscle during unrestrained locomotion. Exp. Neurol., 87, 96–108CrossRefGoogle Scholar
Fawcett, D. W. (1986). Bloom and Fawcett, a Textbook of Histology. 11th edn. Philadelphia, PA: Saunders
Fick, A. (1860). Über die Längenverhältnisse der Skelettmuskelfasern. Aus der Inaug.-Diss. des Herrn Dr. GUBLER, mitgeteilt von A. FICK. Moleschtt Us, 8, 253–263 (1860) und GS, 1, 445–455 (1903)
Fick, R. (1910). Anatomie und Mechanik der Gelenke unter Berücksichtigung der bewegenden Muskeln. In: Handbuch der Anatomie des Menschen, ed. K. V. Bardeleben. Jena: Gustav Fischer. Vol. 2, sect. 1, part 2, pp. 1–363
Fleagle, J. G. (1977). Locomotor behavior and muscular anatomy of sympatric Malaysian leaf monkeys (Presbytis obscura and Presbytis melalophos). Amer. J. Phys. Anthropol., 46, 297–308CrossRefGoogle Scholar
Fleagle J. G. (1999). Primate Adaptation and Evolution. 2nd edn. San Diego, CA: Academic Press
Fleagle, J. G. and Anapol, F. (1992). The indriid ischium and the hominid hip. J. Hum. Evol., 22, 285–305CrossRefGoogle Scholar
Fleagle, J. G., Stern, J. T., Jr., Jungers, W. L., and Susman, R. L. (1981). Climbing: a biomechanical link with brachiation and with bipedalism. In: Vertebrate Locomotion, ed. M. Day. Symp. Zool. Soc. Lond. 48. London: Academic Press. pp. 359–375
Gans, C. (1982). Fiber architecture and muscle function. Exerc. Spt. Sci. Rev., 10, 160–207Google ScholarPubMed
Gans, C. and Bock, W. F. (1965). The functional significance of muscle architecture – a theoretical analysis. Ergeb. Anat. Entwicklungsgesch., 38, 115–142Google ScholarPubMed
Gans, C. and Vree, F. (1989). Functional bases of fiber length and angulation in muscle. J. Morphol., 192, 63–85CrossRefGoogle Scholar
Gaunt, A. S. and Gans, C. (1992). Serially arranged myofibers: an unappreciated variant in muscle architecture. Experientia, 48, 864–868CrossRefGoogle Scholar
Gebo, D. L. and Chapman, C. A. (1995). Positional behavior in five sympatric Old World monkeys. Amer. J. Phys. Anthropol., 97, 49–76CrossRefGoogle ScholarPubMed
Gillespie, C. A., Simpson, D. R., and Edgerton, V. R. (1974). Motor unit recruitment as reflected by muscle fiber glycogen loss in a prosimian (bushbaby) after running and jumping. J. Neurol. Neurosurg. Psych., 37, 817–824CrossRefGoogle Scholar
Gonyea, W. J. and Ericson, G. C. (1977). Morphological and histochemical organization of the flexor carpi radialis muscle in the cat. Amer. J. Anat., 148, 329–344CrossRefGoogle ScholarPubMed
Good, P. I. (1999). Resampling Methods: a Practical Guide to Data Analysis. Boston, MA: Birkhäuser
Gordon, A. M., Huxley, A. F., and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol., 184, 170–192CrossRefGoogle ScholarPubMed
Goslow, G. E. Jr., Cameron, W. E., and Stuart, D. G. (1977). Ankle flexor muscles in the cat: length-active tension and muscle unit properties as related to locomotion. J. Morphol., 15, 23–38CrossRefGoogle Scholar
Grand, T. I. (1967). The functional anatomy of the ankle and foot of the slow loris (Nycticebus coucang). Amer. J. Phys. Anthropol., 26, 207–218CrossRefGoogle Scholar
Grand, T. I. (1968a). The functional anatomy of the lower limb of the Howler monkey (Alouatta caraya). Amer. J. Phys. Anthropol., 28, 163–183CrossRefGoogle Scholar
Grand T. I. (1968b). Functional anatomy of the upper limb. In: Biology of the Howler Monkey (Alouatta caraya), ed. M. R. Malinow. Bibl. Primatol., 7. Basel: Karger. pp. 104–125
Grand, T. I. (1977). Body weight: its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons. Amer. J. Phys. Anthropol., 47, 211–239CrossRefGoogle ScholarPubMed
Grand, T. I. and Lorenz, R. (1968). Functional analysis of the hip joint in Tarsius bancanus (Horsfield, 1821) and Tarsius syrichta (Linnaeus, 1758). Folia Primatol., 9, 161–181CrossRefGoogle Scholar
Gray, J. E. (1870). Catalogue of Monkeys, Lemurs and Fruit-eating Bats in the Collection of the British Museum. London: Trustees of the British Museum
Gregory, W. K. (1912). Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Ann. N. Y. Acad. Sci., 22, 267–294CrossRefGoogle Scholar
Groves, C. P. (1989). A Theory of Human and Primate Evolution. Oxford: Oxford University Press
Groves, C. P. (2000). The phylogeny of the Cercopithecoidea. In: Old World Monkeys, ed. P. F. Whitehead and C. J. Jolly. Cambridge: Cambridge University Press. pp. 77–98CrossRef
Haines, R. W. (1932). The laws of muscle and tendon growth. J. Anat., 66, 578–585Google ScholarPubMed
Haxton, H. A. (1944). Absolute muscle force in the ankle flexors of man. J. Physiol. Lond., 103, 267–273CrossRefGoogle Scholar
Herring, S. W., Wineski, L. E., and Anapol, F. C. (1989). Neural organization of the masseter muscle in the pig. J. Comp. Neurol., 280, 563–576CrossRefGoogle ScholarPubMed
Herring, S. W., Anapol, F. C., and Wineski, L. E. (1991). Motor unit territories in the masseter muscle of infant pigs. Archiv. Oral Biol., 36, 867–873CrossRefGoogle ScholarPubMed
Hildebrand, M. (1959). Motions of the running cheetah and horse. J. Mammal., 40, 481–495CrossRefGoogle Scholar
Hildebrand, M. (1974). Analysis of Vertebrate Structure. New York, NY: Wiley
Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B, 126, 136–194CrossRefGoogle Scholar
Howell, A. B. and Straus, W. L., Jr. (1933). The muscular system. In: The Anatomy of the Rhesus Monkey, ed. C. G. Hartman and W. L. Straus. New York, NY: Hafner. pp. 89–175
Hoyle, G. and Smyth, T. Jr. (1963). Giant muscle fibers in a barnacle, Balanus nubilus (Darwin). Sci., 139, 49–50CrossRefGoogle Scholar
Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7, 255–318Google ScholarPubMed
Jenkins, F. A. and Weijs, W. A. (1979). The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J. Zool. Lond., 188, 379–410CrossRefGoogle Scholar
Jungers, W. L., Jouffroy, F. K., and Stern, J. T. Jr. (1980). Gross structure and function of the quadriceps femoris in Lemur fulvus: an analysis based on telemetered electromyography. J. Morphol., 164, 287–299CrossRefGoogle ScholarPubMed
Jungers, W. L., Stern, J. T. Jr., and Jouffroy, F. K. (1983). Functional morphology of the quadriceps femoris in primates: a comparative anatomical and experimental analysis. Ann. Sci. Nat., Zool., Paris, 13 Serie, 5, 101–116Google Scholar
Kimura, K., Takahashi, Y., Konishi, M., and Iwamoto, S. (1983). Extensor muscles of the thigh of crab-eating monkeys (Macaca fascicularis). Primates, 24, 86–93CrossRefGoogle Scholar
Larson, S. G. and Stern, J. T. Jr. (1986). EMG of scapulohumeral muscles in the chimpanzee during reaching and “arboreal” locomotion. Amer. J. Anat., 176, 171–190CrossRefGoogle ScholarPubMed
Larson, S. G. (1987). EMG of chimpanzee shoulder muscles during knuckle-walking: problems of terrestrial locomotion in a suspensory adapted primate. J. Zool. Lond., 212, 629–655CrossRefGoogle Scholar
Lewontin, R. C. (1966). On the measurement of relative variability. Syst. Zool., 15, 141–142CrossRefGoogle Scholar
Lieber, R. L. and Blevins, F. T. (1989). Skeletal muscle architecture of the rabbit hindlimb: functional implications of muscle design. J. Morphol., 199, 93–101CrossRefGoogle ScholarPubMed
Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology. 2nd edn. New York, NY: Chapman Hall
McClearn, D. (1985). Anatomy of racoon (Procyon lotor) and coati (Nasua narica and N. nasua) forearm and leg muscles: relations between fiber length, moment-arm length, and joint-angle excursion. J. Morphol., 183, 87–115CrossRefGoogle Scholar
Muhl, Z. F. (1982). Active length–tension relation and the effect of muscle pinnation on fiber lengthening. J. Morphol. 173, 285–292CrossRefGoogle ScholarPubMed
Murphy, R. A. and Beardsley, A. C. (1974). Mechanical properties of the cat soleus muscle in situ. Amer. J. Physiol., 227, 1008–1013Google ScholarPubMed
Oxnard, C. E. (1975). Uniqueness and Diversity in Human Evolution: Morphometric studies of Australopithecines. Chicago, IL: University of Chicago Press
Paul, R. J. (1983). Physical and biochemical energy balance during an isometric tetanus and steady state recovery in frog sartorius at 0 °C. J. Gen. Physiol., 81, 337–354CrossRefGoogle Scholar
Peters, S. E. and Rick, C. (1977). The actions of three hamstring muscles of the cat: a mechanical analysis. J. Morphol., 152, 315–328CrossRefGoogle ScholarPubMed
Pfuhl, W. (1937). Die gefiederten Muskeln, ihre Form und ihre Wirkungsewise. Z. Anat. Enwickl.-Gesch., 196, 749–769CrossRefGoogle Scholar
Prophet, E. B., Mills, B., Arrington, J. B., and Sobin, L. H. (1992). Laboratory Methods in Histotechnology. Washington, DC: Armed Forces Institute of Pathology
Quest, W. J. (1987). Estimation of Intrinsic Strength of Rabbit Digastric Muscles from Physiological Cross-Sectional Area. M.S. thesis, University of Illinois at Chicago
Ramsey, R. W. and Street, S. F. (1940). The isometric length tension diagram of isolated skeletal muscle fibers of the frog. J. Cell. Comp. Physiol., 15, 11–34CrossRefGoogle Scholar
Rasmussen, S., Chan, A. K., and Goslow, G. E. Jr. (1978). The cat step cycle: electromyographic patterns for hind limb muscles during posture and unrestrained locomotion. J. Morphol., 155, 253–270CrossRefGoogle ScholarPubMed
Reiser, P. J., Moss, R. L., Giulian, G. G., and Greaser, M. L. (1985). Shortening velocity in single fibers from adult rabbit soleus muscle is correlated with myosin heavy chain composition. J. Biol. Chem., 260, 9077–9080Google ScholarPubMed
Richmond, F. J. R. (1998). Elements of style in neuromuscular architecture. Amer. Zool., 38, 729–742CrossRefGoogle Scholar
Sacks, R. D. and Roy, R. R. (1982). Architecture of the hind limb muscles of cats: Functional significance. J. Morphol., 173, 185–195CrossRefGoogle ScholarPubMed
Scapino, R. P. (1968). Biomechanics of Feeding in Carnivora. Ph. D. thesis, University of Illinois at Chicago
Schmitt, D. (1998). Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World monkeys. In: Primate Locomotion: Recent Advances, ed. E. Strasser, J. G. Fleagle, H. McHenry, and A. Rosenberger. New York, NY: Plenum Press. pp. 175–200CrossRef
Schmitt, D. (2003). Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates. J. Hum. Evol., 44, 47–58CrossRefGoogle ScholarPubMed
Schumacher, G. H. (1961). Funktionelle Morphologie der Kaumuskulatur. Jena: Gustav Fischer. (Trans. by Z. Muhl)
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611CrossRefGoogle Scholar
Smith, J. L., Edgerton, V. R., Betts, B., and Collatos, T. C. (1977). EMG of slow and fast ankle extensors of cat during posture, locomotion, and jumping. J. Neurophysiol., 40, 503–513CrossRefGoogle ScholarPubMed
Smith, J. L., Betts, B., Edgerton, V. R., and Zernicke, R. F. (1980). Rapid ankle extension during paw shakes: selective recruitment of fast ankle extensors. J. Neurophysiol., 43, 612–620CrossRefGoogle ScholarPubMed
Smith, J. M. and Savage, R. J. G. (1955). Some locomotory adaptations in mammals. J. Linn. Soc. Lond. Zool., 42, 603–622CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1981). Biometry. 2nd edn. San Francisco, CA: W. H. Freeman
Spector, S. A., Gardiner, P. F., Zernicke, R. F., Roy, R. R., and Edgerton, V. R. (1980). Muscle architecture and force–velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J. Neurophysiol., 44, 951–960CrossRefGoogle ScholarPubMed
Stern, J. T., Jr. (1971). Functional Myology of the Hip and Thigh of Cebid Monkeys and its Implications for the Evolution of Erect Posture. Bibl. Primatol, 14. Basel: Karger
Stern, J. T., Jr. (1974). Computer modeling of gross muscle dynamics. J. Biomech., 7, 4111–28CrossRefGoogle Scholar
Stern, J. T. Jr., Wells, J. P., Vangor, A. K., and Fleagle, J. G. (1977). Electromyography of some muscles of the upper limb in Ateles and Lagothrix. Yrbk. Phys. Anthropol., 20, 98–507Google Scholar
Swartz, S. M. and Tuttle, R. H. (1990). Allometric patterns in the limb musculature of catarrhine primates. Amer. J. Phys. Anthropol., 81, 304Google Scholar
Tappen, N. C. (1991). Present and future status of the Tappen collection of primate specimens at the University of Wisconsin–Milwaukee. In: Primatology Today, ed. A. Ehara and T. Kimura. Amsterdam: Elsevier. pp. 555–558
Tokuriki, M. (1973). Electromyographic and joint-mechanical studies in quadrupedal locomotion. I. Walking. Jpn. J. Vet. Sci., 35, 433–446CrossRefGoogle ScholarPubMed
Tuttle, R. H. and Basmajian, J. V. (1978a). Electromyography of pongid shoulder muscles. II. Deltoid, rhomboid and “rotator cuff.”Amer. J. Phys. Anthropol., 49, 47–56CrossRefGoogle Scholar
Tuttle, R. H. (1978b). Electromyography of pongid shoulder muscles. III. Quadrupedal positional behavior. Amer. J. Phys. Anthropol., 49, 57–70CrossRefGoogle Scholar
Vangor, A. K. (1979). Electromyography of Gait in Non-Human Primates and its Significance for the Evolution of Bipedality. Ph. D. thesis, State University of New York at Stony Brook
Walmsley, B. and Proske, U. (1981). Comparison of stiffness of soleus and medial gastrocnemius muscles in cats. J. Neurophysiol., 46, 250–259CrossRefGoogle ScholarPubMed
Walmsley, B., Hodgson, J. A., and Burke, R. E. (1978). Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J. Neurophysiol., 41, 1203–1216CrossRefGoogle ScholarPubMed
Weber, E. F. (1851). Uber die Langenverhaltnisse der Fleischfasern der Muskeln im allgemeinen. Ber. K. sachs. Ges. Wiss. nat. phys., K1, 64–86Google Scholar
Wilkie, D. R. (1968). Heat work and phosphoryl creatine breakdown in muscle. J. Physiol., 195, 157–183CrossRefGoogle Scholar
Willemse, J. J. (1963). Some characteristics of muscle fibers in a pinnate muscle. Proc. Kon. Ned. Akad. Wet. Ser. C, 66, 162–171Google Scholar
Willemse, J. J. (1977). Morphological and functional aspects of the arrangement of connective tissue and muscle fibres in the tail of the Mexican axolotl, Siredon mexicanum (Shaw) (Amphibia, Urodela). Acta Anat., 97, 266–285CrossRefGoogle Scholar
Wineski, L. and Gans, C. (1984). Morphological basis of the feeding mechanics in the shingleback lizard Trachydosaurus rugosus (Scincidae: Reptilia). J. Morphol., 181, 271–295CrossRefGoogle Scholar
Woods, C. A. and Hermanson, J. W. (1985). Myology of hystricognath rodents: an analysis of form, function and phylogeny. In: Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, ed. W. P. Luckett and J. L. Hartenberger. New York, NY: Plenum Press. pp. 515–548CrossRef
Zar, J. H. (1984). Biostatistical Analysis. 2nd edn. Englewood Cliffs, NJ: Prentice-Hall

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×