Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T06:47:34.993Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  11 November 2009

Randy J. Nelson
Affiliation:
Ohio State University
Gregory E. Demas
Affiliation:
Indiana University
Sabra L. Klein
Affiliation:
The Johns Hopkins University
Lance J. Kriegsfeld
Affiliation:
Columbia University, New York
Get access

Summary

Our environment changes seasonally. From the amount of light that we are exposed to each day to the availability of food and water, we are confronted with an ever-changing environment. As a consequence of these environmental changes, all inhabitants of Earth show fluctuations in energetically expensive physiological and behavioral processes throughout the year. Thus, adaptations have evolved so that energetically demanding processes coincide with abundant resources or other environmental conditions that promote survival and, ultimately, reproductive success. The study of seasonal changes in physiology and behavior in the field is typically limited to population dynamics among nondomesticated animals. Seasonal patterns of behaviors, including those associated with reproduction, social behavior, and daily activity, as well as seasonality in the physiology that underlies these behaviors, are well documented (Bronson and Heideman, 1994). Most studies of seasonality involve some aspect of seasonal breeding, such as mating, birth, or parental care. Seasonal patterns of illness and death are equally salient among natural populations of animals in the wild, but the underlying factors driving these seasonal patterns are much less studied than the extrinsic factors driving seasonal patterns of breeding. Generally, illness and death are most common during the fall and winter, compared with spring and summer, for most nontropical species.

One goal of our book is to describe an emerging hypothesis that individuals have evolved mechanisms to bolster immune function to counteract seasonally recurrent stressors that may otherwise compromise immune function. Seasonally recurrent stressors include food shortages, low ambient temperatures, and lack of cover from hungry predators. Survival thus represents maintaining the well-known energy budget and also maintaining a balance between stress-induced immunosuppression and endogenous rhythms of enhanced immune function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×