Skip to main content Accessibility help
×
Home
  • Cited by 1
  • Print publication year: 2018
  • Online publication date: December 2018

10 - Saturn’s Seasonally Changing Atmosphere

Summary

The longevity of Cassini’s exploration of Saturn’s atmosphere (a third of a Saturnian year) means that we have been able to track the seasonal evolution of atmospheric temperatures, chemistry and cloud opacity over almost every season, from solstice to solstice and from perihelion to aphelion. Cassini has built upon the decades-long ground-based record to observe seasonal shifts in atmospheric temperature, finding a thermal response that lags behind the seasonal insolation with a lag time that increases with depth into the atmosphere, in agreement with radiative climate models. Seasonal hemispheric contrasts are perturbed at smaller scales by atmospheric circulation, such as belt/zone dynamics, the equatorial oscillations and the polar vortices. Temperature asymmetries are largest in the middle stratosphere and become insignificant near the radiative-convective boundary. Cassini has also measured southern-summertime asymmetries in atmospheric composition, including ammonia (the key species forming the topmost clouds), phosphine and para-hydrogen (both disequilibrium species) in the upper troposphere; and hydrocarbons deriving from the UV photolysis of methane in the stratosphere (principally ethane and acetylene). These chemical asymmetries are now altering in subtle ways due to (i) the changing chemical efficiencies with temperature and insolation and (ii) vertical motions associated with large-scale overturning in response to the seasonal temperature contrasts. Similarly, hemispheric contrasts in tropospheric aerosol opacity and coloration that were identified during the earliest phases of Cassini’s exploration have now reversed, suggesting an intricate link between the clouds and the temperatures. Finally, comparisons of observations between Voyager and Cassini (both observing in early northern spring, one Saturn year apart) show tantalizing suggestions of non-seasonal variability. Disentangling the competing effects of radiative balance, chemistry and dynamics in shaping the seasonal evolution of Saturn’s temperatures, clouds and composition remains the key challenge for the next generation of observations and numerical simulations.

Abbas, M. M., LeClair, A., Woodard, E. et al. (2013), Distribution of CO2 in Saturn’s atmosphere from Cassini/CIRS infrared observations. Astrophys. J., 776 (Oct.), 73.
Appleby, J. F. and Hogan, J. S. (1984), Radiative-convective equilibrium models of Jupiter and Saturn. Icarus, 59(Sept.), 336366.
Armstrong, E. S., Moses, J. I., Fletcher, L. N. et al. (2014) (Nov.), The chemistry of ethene in the storm beacon region on Saturn. Page submitted of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.
Atreya, S. K., Donahue, T. M. and Kuhn, W. R. (1977), The distribution of ammonia and its photochemical products on Jupiter. Icarus, 31, 348355.
Atreya, S. K., Donahue, T. M., Nagy, A. F. et al. (1984), Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. Pages 239277 of: Gehrels, T., and Matthews, M. S. (eds), Saturn. Tucson: University of Arizona Press.
Atreya, S. K., Kuhn, W. R. and Donahue, T. M. (1980), Saturn: Tropospheric ammonia and nitrogen. Geophys. Res. Lett., 7, 474476.
Atreya, S. K. and Wong, A.-S. (2005), Coupled clouds and chemistry of the giant planets: A case for multiprobes. Space Sci. Rev., 116 (Jan.), 121136.
Atreya, S. K., Wong, M. H., Owen, T. C. et al. (1999), A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Plan. & Space Sci., 47, 12431262.
Baines, K. H., Momary, T. W., Roos-Serote, M. et al. (2006), North vs. south on Saturn: Discovery of a pronounced hemispherical asymmetry in Saturn’s 5-micron emission and associated deep cloud structure by Cassini/VIMS. B.A.A.S., 38, 488.
Barnet, C. D., Beebe, R. F. and Conrath, B. J. (1992), A seasonal radiative-dynamic model of Saturn’s troposphere. Icarus, 98, 94107.
Bell, J. M.,Westlake, J. and Waite, J. H., Jr. (2011), Simulating the time-dependent response of Titan’s upper atmosphere to periods of magnetospheric forcing. Geophys. Res. Lett., 38, L06202.
Bellucci, A., Sicardy, B., Drossart, P. et al. (2009), Titan solar occultation observed by Cassini/VIMS: Gas absorption and constraints on aerosol composition. Icarus, 201, 198216.
Bézard, B., Drossart, P., Encrenaz, T. et al. (2001a), Benzene on the Giant Planets. Icarus, 154 (Dec.), 492500.
Bézard, B., Drossart, P., Lellouch, E. et al. (1989), Detection of arsine in Saturn. Astrophys. J., 346, 509513.
Bézard, B., Feuchtgruber, H., Moses, J. I. et al. (1998), Detection of methyl radicals (CH-3) on Saturn. Astron. Astrophys., 334, L41L44.
Bézard, B. and Gautier, D. (1985), A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time: I. Saturn’s stratosphere. Icarus, 61, 296310.
Bézard, B., Gautier, D. and Conrath, B. (1984), A seasonal model of the Saturnian upper troposphere Comparison with Voyager infrared measurements. Icarus, 60, 274288.
Bézard, B., Lellouch, E., Strobel, D. et al. (2002), Carbon monoxide on Jupiter: Evidence for both internal and external sources. Icarus, 159, 95111.
Bézard, B., Moses, J. I., Lacy, J. et al. (2001b) (Nov.), Detection of Ethylene (C2H4) on Jupiter and Saturn in Non-Auroral Regions. Pages 1079 ff. of: Bulletin of the American Astronomical Society.
Bjoraker, G. L., Larson, H. P. and Fink, U. (1981), A study of ethane on Saturn in the 3 micron region. Astrophys. J., 248, 856862.
Bregman, J. D., Lester, D. F. and Rank, D. M. (1975), Observation of the nu-squared band of PH3 in the atmosphere of Saturn. Astrophys. J., 202.
Briggs, F. H. and Sackett, P. D. (1989), Radio observations of Saturn as a probe of its atmosphere and cloud structure. Icarus, 80, 77103.
Burgdorf, M. J., Orton, G. S., Encrenaz, T. et al. (2004), Far-infrared spectroscopy of the giant planets: measurements of ammonia and phosphine at Jupiter and Saturn and the continuum of Neptune. Advances in Space Research, 34, 22472250.
Caldwell, J. (1977), The atmosphere of Saturn: An infrared perspective. Icarus, 30(Mar.), 493510.
Caldwell, J., Gillett, F. C., Nolt, I. G. et al. (1978), Spatially resolved infrared observations of Saturn: I. Equatorial limb scans at 20 microns. Icarus, 35 (Sept.), 308312.
Carlson, B. E., Caldwell, J. and Cess, R. D. (1980), A model of Saturn’s seasonal stratosphere at the time of the Voyager encounters. Journal of Atmospheric Sciences, 37 (Aug.), 18831885.
Carlson, R. W., Baines, K. H., Anderson, W. S. et al. (2012), (Oct.), Chromophores from Photolyzed Ammonia Reacting with Acetylene: Application to Jupiter’s Great Red Spot. Page #205.01 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44.
Cavalié, T., Billebaud, F., Dobrijevic, M. et al. (2009), First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT: New constraints on its origin. Icarus, 203 (Oct.), 531540.
Cavalié, T., Hartogh, P., Billebaud, F. et al. (2010), A cometary origin for CO in the stratosphere of Saturn? Astron. Astrophys, 510 (Feb.), A88.
Cess, R. D. and Caldwell, J. (1979), A Saturnian stratospheric seasonal climate model. Icarus, 38, 349357.
Conrath, B. J., Gierasch, P. J. and Leroy, S. S. (1990), Temperature and circulation in the stratosphere of the outer planets. Icarus, 83, 255281.
Conrath, B. J., Gierasch, P. J. and Ustinov, E. A. (1998), Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus, 135, 501517.
Conrath, B. J. and Pirraglia, J. A. (1983), Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus, 53, 286292.
Courtin, R., Gautier, D., Marten, A. et al. (1984), The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra – NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. Astrophys. J., 287, 899916.
Davis, G. R., Griffin, M. J., Naylor, D. A. et al. (1996), ISO LWS measurement of the far-infrared spectrum of Saturn. Astron. Astrophys., 315, L393L396.
de Graauw, T., Feuchtgruber, H., Bézard, B. et al. (1997), First results of ISO-SWS observations of Saturn: detection of CO2, CH3C2 H, C4H2 and tropospheric H2O. Astron. Astrophys., 321, L13L16.
de Pater, I. and Massie, S. T. (1985), Models of the millimeter-centimeter spectra of the giant planets. Icarus, 62, 143171.
Del Genio, A. D., Achterberg, R. K., Baines, K. H. et al. (2009), Saturn Atmospheric Structure and Dynamics, In: Saturn from Cassini-Huygens. Springer. Chap. 6, pages 113159.
Dobrijevic, M., Cavalié, T. and Billebaud, F. (2011), A methodology to construct a reduced chemical scheme for 2D-3D photochemical models: Application to Saturn. Icarus, 214, 275285.
Dobrijevic, M., Hébrard, E., Loison, J. C. et al. (2014), Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan’s atmosphere. Icarus, 228, 324346.
Dowling, T. E., Greathouse, T. K., Sussman, M. G. et al. (2010) (Oct.), New Radiative Transfer Capability in the EPIC Atmospheric Model with Application to Saturn and Uranus. Page 1021 of: AAS/Division for Planetary Sciences Meeting Abstracts #42. Bulletin of the American Astronomical Society, vol. 42.
Edgington, S. G., Atreya, S. K., Trafton, L. M. et al. (1997), Phosphine mixing ratios and eddy mixing coefficients in the troposphere of Saturn. Bulletin of the American Astronomical Society, 29, 992.
Edgington, S. G., Atreya, S. K., Wilson, E. H. et al. (2012), Photochemistry in Saturn’s Ring Shadowed Atmosphere: Production Rates of Key Atmospheric Molecules and Preliminary Analysis of Observations. AGU Fall Meeting Abstracts, Dec., B1946.
Encrenaz, T., Owen, T. and Woodman, J. H. (1974), The abundance of ammonia on Jupiter, Saturn and Titan. Astron. Astrophys., 37 (Dec.), 4955.
Fegley, Jr., B. and Lodders, K. (1994), Chemical models of the deep atmospheres of Jupiter and Saturn. Icarus, 110 (July), 117154.
Fegley, B. and Prinn, R. G. (1985), Equilibrium and nonequilibrium chemistry of Saturn’s atmosphere: Implications for the observability of PH3, N2, CO, and GeH4. Astrophys. J., 299, 10671078.
Ferris, J. P. and Ishikawa, Y. (1988), Formation of HCN and acetylene oligomers by photolysis of ammonia in the presence of acetylene: Applications to the atmospheric chemistry of Jupiter. J. Am. Chem. Soc., 110, 43064312.
Fink, U., Larson, H. P., Bjoraker, G. L. et al. (1983), The NH3 spectrum in Saturn’s 5 micron window. ApJ, 268 (May), 880888.
Flasar, F. M., Achterberg, R. K., Conrath, B. J. et al. (2005), Temperatures, winds, and composition in the Saturnian system. Science, 307, 12471251.
Flasar, F. M., Kunde, V. G., Abbas, M. M. et al. (2004), Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer. Space Science Reviews, 115, 169297.
Fletcher, L. N., Achterberg, R. K., Greathouse, T. K. et al. (2010), Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus, 208 (July), 337352.
Fletcher, L. N., Baines, K. H., Momary, T. W. et al. (2011), Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 µm nightside spectroscopy. Icarus, 214 (Aug.), 510533.
Fletcher, L. N., Hesman, B. E., Achterberg, R. K. et al. (2012b), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus, 221 (Nov.), 560586.
Fletcher, L. N., Irwin, P. G. J., Achterberg, R. K. et al. (2016), Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini Far-IR Spectroscopy. Icarus, 264, 137159.
Fletcher, L. N., Irwin, P. G. J., Orton, G. S. et al. (2008), Temperature and composition of Saturn’s polar hot spots and hexagon. Science, 319 (Jan.), 7982.
Fletcher, L. N., Irwin, P. G. J., Sinclair, J. A. et al. (2015), Seasonal evolution of Saturn’s polar temperatures and composition. Icarus, 131153.
Fletcher, L. N., Irwin, P. G. J., Teanby, N. A. et al. (2007a), Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus, 189, 457478.
Fletcher, L. N., Irwin, P. G. J., Teanby, N. A. (2007b), The meridional phosphine distribution in Saturn’s upper troposphere from Cassini/CIRS observations. Icarus, 188 (May), 7288.
Fletcher, L. N., Irwin, P. G. J., Teanby, N. A. (2009), Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202 (Aug.), 543564.
Fletcher, L. N., Swinyard, B., Salji, C. et al. (2012a), Sub-millimetre spectroscopy of Saturn’s trace gases from Herschel/SPIRE. Astron. Astrophys., 539 (Mar.), A44.
Fouchet, T., Guerlet, S., Strobel, D. F. et al. (2008), An equatorial oscillation in Saturn’s middle atmosphere. Nature, 453(7192), 200202.
Fouchet, T., Lellouch, E. and Feuchtgruber, H. (2003), The hydrogen ortho-to-para ratio in the stratospheres of the giant planets. Icarus, 161, 127143.
Fouchet, T., Moses, J. I. and Conrath, B. J. (2009), Saturn: Composition and Chemistry, In: Saturn from Cassini-Huygens, Springer, Chap. 5, pages 83 ff.
Friedson, A. J. and Moses, J. I. (2012), General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus, 218 (Apr.), 861875.
Friedson, A. J., Wong, A.-S. and Yung, Y. L. (2002), Models for polar haze formation in Jupiter’s stratosphere. Icarus, 158, 389400.
Gans, B., Boyé-Péronne, S., Broquier, M. et al. (2011), Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry. Physical Chemistry Chemical Physics, 13, 8140.
Gezari, D. Y., Mumma, M. J., Espenak, F. et al. (1989), New features in Saturn’s atmosphere revealed by high-resolution thermal infrared images. Nature, 342, 777780.
Gillett, F. C. and Forrest, W. J. (1974), The 7.5- to 13.5-MICRON spectrum of Saturn. Astrophys. J.l, 187(Jan.), L37.
Gillett, F. C. and Orton, G. S. (1975), Center-to-limb observations of Saturn in the thermal infrared. Astrophys. J., 195 (Jan.), L47L49.
Giver, L. P. and Spinrad, H. (1966), Molecular Hydrogen Features in the Spectra of Saturn and Uranus. Icarus, 5, 586589.
Gladstone, G. R., Allen, M. and Yung, Y. L. (1996), Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus, 119, 152.
Greathouse, T. K., Lacy, J. H., Bézard, B. et al. (2005), Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn’s stratosphere at southern summer solstice. Icarus, 177, 1831.
Greathouse, T. K., Lacy, J. H., Bézard, B. (2006), The first detection of propane on Saturn. Icarus, 181 (Mar.), 266271.
Greathouse, T., Moses, J., Fletcher, L. et al. (2010) (May), Seasonal Temperature Variations in Saturn’s Stratosphere: Radiative Seasonal Model vs. Observations. Page 4806 of: EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 12.
Greathouse, T. K., Strong, S., Moses, J. et al. (2008), A General Radiative Seasonal Climate Model Applied to Saturn, Uranus, and Neptune. AGU Fall Meeting Abstracts, Dec., P21B06.
Grossman, A. W., Muhleman, D. O. and Berge, G. L. (1989), High-resolution microwave images of Saturn. Science, 245, 12111215.
Guerlet, S., Fouchet, T., Bézard, B. et al. (2009), Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus, 203, 214232.
Guerlet, S., Fouchet, T., Bézard, B. (2010), Meridional distribution of CH3C2 H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus, 209 (Oct.), 682695.
Guerlet, S., Fouchet, T., Bézard, B. (2011), Evolution of the equatorial oscillation in Saturn’s stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophysical Research Letters, 38 (May), 9201.
Guerlet, S., Fouchet, T., Vinatier, S. et al. (2015), Stratospheric benzene and hydrocarbon aerosols detected in Saturn’s auroral regions. Astronomy and Astrophysics, 580 (Aug.), A89.
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 238 (Aug.), 110124.
Guillemin, J.-C., Janati, T. and Lassalle, L. (1995), Photolysis of phosphine in the presence of acetylene and propyne, gas mixtures of planetary interest. Advances in Space Research, 16, 8592.
Hanel, R., Conrath, B., Flasar, F. M. et al. (1981), Infrared observations of the Saturnian system from Voyager 1. Science, 212, 192200.
Hanel, R., Conrath, B., Flasar, F. M. (1982), Infrared observations of the Saturnian system from Voyager 2. Science, 215, 544548.
Hanel, R. A., Conrath, B. J., Jennings, D. E. et al. (2003), Exploration of the Solar System by Infrared Remote Sensing: Second Edition. Exploration of the Solar System by Infrared Remote Sensing, by Hanel, R. A. and Conrath, B. J. and Jennings, D. E. and Samuelson, R. E.. Cambridge: Cambridge University Press, April 2003.
Hartogh, P., Lellouch, E., Moreno, R. et al. (2011), Direct detection of the Enceladus water torus with Herschel. Astron. Astrophys, 532 (Aug.), L2.
Hébrard, E., Dobrijevic, M., Loison, J. C. et al. (2013), Photochemistry of C3Hp hydrocarbons in Titan’s stratosphere revisited. Astron. Astrophys., 552, A132.
Hesman, B. E., Bjoraker, G. L., Sada, P. V. et al. (2012), Elusive Ethylene Detected in Saturn’s Northern Storm Region. Astrophys. J., 760 (Nov.), 24.
Hesman, B. E., Jennings, D. E., Sada, P. V. et al. (2009), Saturn’s latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus, 202 (July), 249259.
Holton, J. R. (2004), An Introduction to Dynamic Meteorology. Academic Press.
Howett, C. J. A., Irwin, P. G. J., Teanby, N. A. et al. (2007), Meridional variations in stratospheric acetylene and ethane in the Saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus, 190(2), 556572.
Hue, V., Cavalié, T., Dobrijevic, M. et al. (2015), 2D photochemical modeling of Saturn’s stratosphere. Part I: Seasonal variation of atmospheric composition without meridional transport. Icarus, 257 (Sept.), 163184.
Hurley, J., Fletcher, L. N., Irwin, P. G. J. et al. (2012), Latitudinal variation of upper tropospheric NH3 on Saturn derived from Cassini/CIRS far-infrared measurements. Plan. & Space Sci., 73 (Dec.), 347363.
Ingersoll, A. P., Beebe, R. F., Conrath, B. J. et al. (1984), Structure and dynamics of Saturn’s atmosphere. Saturn. Pages 195238.
Janssen, M. A., Ingersoll, A. P., Allison, M. D. et al. (2013), Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus, 226 (Sept.), 522535.
Kalogerakis, K. S., Marschall, J., Oza, A. U. et al. (2008), The coating hypothesis for ammonia ice particles in Jupiter: Labora-tory experiments and optical modeling. Icarus, 196 (July), 202215.
Karkoschka, E. and Tomasko, M. (2005), Saturn’s vertical and latitudinal cloud structure 1991 – 2004 from HST imaging in 30 filters. Icarus, 179, 195221.
Karkoschka, E. and Tomasko, M. G. (1992), Saturn’s upper troposphere 1986–1989. Icarus, 97, 161181.
Karkoschka, E. and Tomasko, M. G. (1993), Saturn’s upper atmospheric hazes observed by the Hubble Space Telescope. Icarus, 106, 428441.
Kaye, J. A. and Strobel, D. F. (1983a), Formation and photochemistry of methylamine in Jupiter’s atmosphere. Icarus, 55, 399419.
Kaye, J. A. and Strobel, D. F.(1983b), HCN formation on Jupiter: The coupled photochemistry of ammonia and acetylene. Icarus, 54, 417433.
Kaye, J. A. and Strobel, D. F. (1983c), Phosphine photochemistry in Saturn’s atmosphere. Geophys. Res. Lett., 10, 957960.
Kaye, J. A. and Strobel, D. F. (1984), Phosphine photochemistry in the atmosphere of Saturn. Icarus, 59 (Sept.), 314335.
Keane, T. C., Yuan, F. and Ferris, J. P. (1996), Potential Jupiter atmospheric constituents: Candidates for the mass spectrometer in the Galileo atmospheric probe. Icarus, 122, 205207.
Kerola, D. X., Larson, H. P. and Tomasko, M. G. (1997), Analysis of the near-IR spectrum of Saturn: A comprehensive radiative transfer model of its middle and upper troposphere. Icarus, 127, 190212.
Kim, J. H., Kim, S. J., Geballe, T. R. et al. (2006), High-resolution spectroscopy of Saturn at 3 microns: CH4, CH3D, C2H2, C2H6, PH3, clouds, and haze. Icarus, 185 (Dec.), 476486.
Kim, S. J. and Geballe, T. R. (2005), The 2.9–4.2 micron spectrum of Saturn: Clouds and CH4, PH3, and NH3. Icarus, 179, 449458.
Kim, S. J., Sim, C. K., Lee, D. W. et al. (2012), The three-micron spectral feature of the Saturnian haze: Implications for the haze composition and formation process. Planet. Space Sci., 65, 122129.
Krasnopolsky, V. A. (2014), Chemical composition of Titan’s atmosphere and ionosphere: Observations and the photochemical model. Icarus, 236, 8391.
Lane, A. L., Hord, C. W., West, R. A. et al. (1982), Photopolarimetry from Voyager 2: Preliminary results on Saturn, Titan, and the rings. Science, 215(Jan.), 537543.
Lara, L. M., Lellouch, E., González, M. et al. (2014), A time-dependent photochemical model for Titan’s atmosphere and the origin of H2O. Astron. Astrophys., 566, A143.
Laraia, A. L., Ingersoll, A. P., Janssen, M. A. et al. (2013), Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor. Icarus, 226(Sept.), 641654.
Larson, H. P. (1980), Infrared spectroscopic observations of the outer planets, their satellites, and the asteroids. Annual Review of Astronomy and Astrophysics, 18, 4375.
Lavvas, P., Galand, M., Yelle, R. V. et al. (2011), Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus, 213, 233251.
Lebonnois, S. (2005), Benzene and aerosol production in Titan and Jupiter’s atmospheres: a sensitivity study. Planet. Space Sci., 53, 486497.
Lellouch, E., Bézard, B., Fouchet, T. et al. (2001), The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys., 370, 610622.
Lewis, J. S. and Fegley, M. B., Jr. (1984), Vertical distribution of disequilibrium species in Jupiter’s troposphere. Space Sci. Rev., 39(Oct.), 163192.
Lewis, J. S. and Prinn, R. G. (1984), Planets and Their Atmospheres: Origin and Evolution. Orlando: Academic Press.
Li, L., Achterberg, R. K., Conrath, B. J. et al. (2013), Strong temporal variation over one Saturnian year: From Voyager to Cassini. Scientific Reports, 3 (Aug.).
Li, L., Conrath, B. J., Gierasch, P. J. et al. (2010), Saturn’s emitted power. Journal of Geophysical Research (Planets), 115 (Nov.), 11002.
Li, L., Jiang, X., Ingersoll, A. P. et al. (2011), Equatorial winds on Saturn and the stratospheric oscillation. Nature Geoscience, 4 (Nov.), 750752.
Lindal, G. F., Sweetnam, D. N. and Eshleman, V. R. (1985), The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astron. J., 90, 11361146.
Lodders, K. and Fegley, B. (2002), Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars: I. Carbon, nitrogen, and oxygen. Icarus, 155 (Feb.), 393424.
Loison, J. C., Hébrard, E., Dobrijevic, M. et al. (2015), The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus, 247 (Feb.), 218247.
Mandt, K. E., Gell, D. A., Perry, M. et al. (2012), Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations. J. Geophys. Res., 117, E10006.
Massie, S. T. and Hunten, D. M. (1982), Conversion of para and ortho hydrogen in the Jovian planets. Icarus, 49, 213226.
Moos, H. W. and Clarke, J. T. (1979), Detection of acetylene in the Saturnian atmosphere, using the IUE satellite. Astrophys. J., 229, L107.
Moreno, R., Lellouch, E., Lara, L. M. et al. (2012), The abundance, vertical distribution and origin of H2O in Titan’s atmosphere: Herschel observations and photochemical modelling. Icarus, 221, 753767.
Moses, J. I., Armstrong, E. S., Fletcher, L. N. et al. (2014) (Nov.), Evolution of stratospheric chemistry in the Saturn storm beacon. Page submitted of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.
Moses, J. I. and Greathouse, T. K. (2005), Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. Journal of Geophysical Research (Planets), 110 (Sept.), E09007.
Moses, J. I., Bézard, B., Lellouch, E. et al. (2000a), Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus, 143, 244298.
Moses, J. I., Fouchet, T., Bézard, B. et al. (2005), Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research (Planets), 110 (Aug.), E08001.
Moses, J. I., Lellouch, E., Bézard, B. et al. (2000b), Photochemistry of Saturn’s atmosphere. II. Effects of an influx of external oxygen. Icarus, 145 (May), 166202.
Moses, J. I., Liang, M.-C., Yung, Y. L. et al. (2007) (Mar.), Two-Dimensional Photochemical Modeling of Hydrocarbon Abundances on Saturn. Page 2196 of: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 38.
Moses, J. I., Visscher, C., Fortney, J. J. et al. (2011), Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J., 737 (Aug.), 15.
Moses, J. I., Visscher, C., Keane, T. C. et al. (2010), On the abundance of non-cometary HCN on Jupiter. Faraday Discussions, 147, 103136.
Nava, D. F., Payne, W. A., Marston, G. et al. (1993), The reaction of atomic hydrogen with germane: Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn. J. Geophys. Res., 98, 55315537.
Noll, K. S., Geballe, T. R. and Knacke, R. F. (1989), Arsine in Saturn and Jupiter. Astrophys. J., 338, L71L74.
Noll, K. S., Knacke, R. F., Geballe, T. R. et al. (1986), Detection of carbon monoxide in Saturn. ApJ Letters, 309 (Oct.), L91L94.
Noll, K. S., Knacke, R. F., Geballe, T. R. (1988), Evidence for germane in Saturn. Icarus, 75, 409422.
Noll, K. S. and Larson, H. P. (1990), The spectrum of Saturn from 1990–2230 cm−1: abundances of AsH3, CH3D, CO, GeH4, and PH3. Icarus, 89, 168189.
Noll, K. S. and Larson, H. P. (1991), The spectrum of Saturn from 1990 to 2230 cm−1: Abundances of AsH3, CH3D, CO, GeH4, NH3, and PH3. Icarus, 89(Jan.), 168189.
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2013), The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature, 496 (Apr.), 193195.
Ollivier, J. L., Billebaud, F., Drossart, P. et al. (2000), Seasonal effects in the thermal structure of Saturn’s stratosphere from infrared imaging at 10 microns. Astron. Astrophys., 356, 347356.
Orton, G. S., Baines, K. H., Cruikshank, D. et al. (2009v Review of Knowledge Prior to the Cassini-Huygens Mission and Concurrent Research, In: Saturn from Cassini-Huygens. Springer. Chap. 2, pages 954.
Orton, G. S. and Ingersoll, A. P. (1980), Saturn’s atmospheric temperature structure and heat budget. Journal of Geophysical Research, 85 (Nov.), 58715881.
Orton, G. S., Moses, J. I., Fletcher, L. N. et al. (2014), Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus, 243 (Nov.), 471493.
Orton, G. S., Serabyn, E. and Lee, Y. T. (2000), Vertical distribution of PH3 in Saturn from observations of its 1–0 and 3–2 rotational lines. Icarus, 146, 4859.
Orton, G. S., Serabyn, E. and Lee, Y. T. (2001), Erratum, Volume 146, Number 1, pages 4859 (2000), in the article Vertical distribution of PH3 in Saturn from observations of its 1–0 and 3–2 rotational lines, Icarus, 149, 489490.
Orton, G. S. and Yanamandra-Fisher, P. A. (2005), Saturn’s temperature field from high-resolution middle-infrared imaging. Science, 307, 696698.
Orton, G. S., Yanamandra-Fisher, P. A., Fisher, B. M. et al. (2008), Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature, 453 (May), 196198.
Palotai, C., Dowling, T. E. and Fletcher, L. N. (2014), 3D Modeling of interactions between Jupiter’s ammonia clouds and large anticyclones. Icarus, 232, 141156.
Pérez-Hoyos, S., Sánchez-Lavega, A. and French, R. G. (2006), Short-term changes in the belt/zone structure of Saturn’s Southern Hemisphere (1996–2004). Astron. Astrophys., 460 (Dec.), 641645.
Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G. et al. (2005), Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus, 176, 155174.
Plessis, S., Carrasco, N., Dobrijevic, M. et al. (2012), Production of neutral species in Titan’s ionosphere through dissociative recombination of ions. Icarus, 219, 254266.
Prangé, R., Fouchet, T., Courtin, R. et al. (2006), Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra. Icarus, 180, 379392.
Prinn, R. G. and Barshay, S. S. (1977), Carbon monoxide on Jupiter and implications for atmospheric convection. Science, 198, 10311034.
Prinn, R. G. and Fegley, B., Jr. (1981), Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae – Implications for satellite composition. Astrophys. J, 249 (Oct.), 308317.
Prinn, R. G., Larson, H. P., Caldwell, J. J. et al. (1984), Composition and chemistry of Saturn’s atmosphere. Saturn. Tucson: University of Arizona Press, pages 88149.
Prinn, R. G. and Owen, T. (1976), Chemistry and spectroscopy of the Jovian atmosphere. Pages 319371 of: Gehrels, T., (ed.), Jupiter. Tucson: University of Arizona Press.
Pryor, W. R. and Hord, C. W. (1991), A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: Implications for auroral haze formation. Icarus, 91, 161172.
Rages, K. A. and Barth, E. L. (2012) (Oct.), Saturn Limb Hazes as Seen from Cassini. Page #500.05 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44.
Rieke, G. H. (1975), The thermal radiation of Saturn and its rings. Icarus, 26 (Sept.), 3744.
Roman, M. T., Banfield, D. and Gierasch, P. J. (2013), Saturn’s cloud structure inferred from Cassini ISS. Icarus, 225 (July), 93110.
Sada, P. V., Bjoraker, G. L., Jennings, D. E. et al. (2005), Observations of C2H6 and C2H2 in the stratosphere of Saturn. Icarus, 173, 499507.
Schinder, P. J., Flasar, F. M., Marouf, E. A. et al. (2011), Saturn’s equatorial oscillation: Evidence of descending thermal structure from Cassini radio occultations. Geophys. Res. Lett., 38 (Apr.), 8205.
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. et al. (2013), Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus, 225 (July), 257271.
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. (2014), From Voyager-IRIS to Cassini-CIRS: Interannual variability in Saturn’s stratosphere? Icarus, 233 (May), 281292.
Spiga, A., Guerlet, S., Indurain, M. et al. (2014) (Nov.), An exploration of Saturn’s stratospheric dynamics through Global Climate Modeling. Page #508.09 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.
Sromovsky, L. A., Baines, K. H. and Fry, P. M. (2013), Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus, 226 (Sept.), 402418.
Stam, D. M., Banfield, D., Gierasch, P. J. et al. (2001), Near-IR Spectrophotometry of Saturnian Aerosols-Meridional and Vertical Distribution. Icarus, 152, 407422.
Strobel, D. F. (1975), Aeronomy of the major planets: Photochemistry of ammonia and hydrocarbons. Reviews of Geophysics and Space Physics, 13, 372382.
Strobel, D. F. (1977), NH3 and PH3 photochemistry in the Jovian atmosphere. Astrophys. J. Lett., 214, L97L99.
Strobel, D. F. (1983), Photochemistry of the reducing atmospheres of Jupiter, Saturn, and Titan. International Reviews in Physical Chemistry, 3, 145176.
Strobel, D. F. (2005), Photochemistry in outer solar system atmospheres. Space Science Reviews, 116, 155170.
Sugiyama, K., Nakajima, K., Odaka, M. et al. (2011), Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett., 38, L13201.
Sugiyama, K., Nakajima, K., Odaka, M. (2014), Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states. Icarus, 229 (Feb.), 7191.
Sylvestre, M., Guerlet, S., Fouchet, T. et al. (2015), Seasonal changes in Saturn’s stratosphere inferred from Cassini/CIRS limb observations. Icarus, 258 (Sept.), 224238.
Tautermann, C. S., Wellenzohn, B. and Clary, D. C. (2006), Rates of the reaction C2H3 + H2 C2H4 + H. Molecular Physics, 104, 151158.
Temma, T., Chanover, N. J., Simon-Miller, A. A. et al. (2005), Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging. Icarus, 175, 464489.
Tokunaga, A. T., Caldwell, J., Gillett, F. C. et al. (1978), Spatially resolved infrared observations of Saturn: II. The temperature enhancement at the South Pole of Saturn. Icarus, 36 (Nov.), 216222.
Tokunaga, A. and Cess, R. D. (1977), A model for the temperature inversion within the atmosphere of Saturn. Icarus, 32 (Nov.), 321327.
Tokunaga, A. T., Dinerstein, H. L., Lester, D. F. et al. (1980), The phosphine abundance on Saturn derived from new 10-micrometer spectra. Icarus, 42, 7985.
Tokunaga, A., Knacke, R. F. and Owen, T. (1975), The detection of ethane on Saturn. Astrophys. J., 197, L77.
Tomasko, M. G. and Doose, L. R. (1984), Polarimetry and photometry of Saturn from Pioneer 11 Observations and constraints on the distribution and properties of cloud and aerosol particles. Icarus, 58, 134.
Tseng, W.-L. and Ip, W.-H. (2011), An assessment and test of Enceladus as an important source of Saturn’s ring atmosphere and ionosphere. Icarus, 212 (Mar.), 294299.
van der Tak, F., de Pater, I., Silva, A. et al. (1999), Time Variability in the Radio Brightness Distribution of Saturn. Icarus, 142 (Nov.), 125147.
Vander Auwera, J., Moazzen-Ahmadi, N. and Flaud, J.-M. (2007), Toward an Accurate Database for the 12 µm Region of the Ethane Spectrum. Astrophysical Journal, 662 (June), 750757.
Vasavada, A. R., Hörst, S. M., Kennedy, M. R. et al. (2006), Cassini imaging of Saturn: Southern hemisphere winds and vortices. Journal of Geophysical Research (Planets), 111(E10), 5004.
Visscher, C. and Fegley, B. J. (2005), Chemical Constraints on the Water and Total Oxygen Abundances in the Deep Atmosphere of Saturn. Astrophys. J., 623, 12211227.
Visscher, C., Lodders, K. and Fegley, B., Jr. (2006), Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus. Astrophys. J. Letters, 648 (Sept.), 11811195.
Visscher, C. and Moses, J. I. (2011), Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters. Astrophys. J., 738, 72.
Visscher, C., Moses, J. I. and Saslow, S. A. (2010), The deep water abundance on Jupiter: New constraints from thermochemical kinetics and diffusion modeling. Icarus, 209, 602615.
Visscher, C., Sperier, A. D., Moses, J. I. et al. (2009) (Mar.), Phosphine and ammonia photochemistry in Jupiter’s troposphere. Page 1201 of: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 40.
Vuitton, V., Yelle, R. V. and Lavvas, P. (2009), Composition and chemistry of Titan’s thermosphere and ionosphere. Royal Society of London Philosophical Transactions Series A, 367, 729741.
Vuitton, V., Yelle, R. V., Lavvas, P. et al. (2012), Rapid association reactions at low pressure: Impact on the formation of hydrocarbons on Titan. Astrophys. J., 744, 11.
Weidenschilling, S. J. and Lewis, J. S. (1973), Atmospheric and cloud structures of the jovian planets. Icarus, 20, 465476.
Weisstein, E. W. and Serabyn, E. (1994), Detection of the 267 GHz J = 1–0 rotational transition of PH3 in Saturn with a new fourier transfer spectrometer. Icarus, 109, 367381.
Weisstein, E. W. and Serabyn, E. (1996), Submillimeter line search in Jupiter and Saturn. Icarus, 123, 2336.
West, R. A., Baines, K. H., Karkoschka, E. et al. (2009), Clouds and Aerosols in Saturn’s Atmosphere, In: Saturn from Cassini-Huygens. Springer. Chap. 7, pages 161179.
West, R. A. and Smith, P. H. (1991), Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90 (Apr.), 330333.
West, R. A., Strobel, D. F. and Tomasko, M. G. (1986), Clouds, aerosols, and photochemistry in the Jovian atmosphere. Icarus, 65, 161217.
West, R. A., Tomasko, M. G., Smith, B. A. et al. (1982), Spatially resolved methane band photometry of Saturn: I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus, 51, 5164.
Westlake, J. H., Waite, J. H., Jr., Mandt, K. E. et al. (2012), Titan’s ionospheric composition and structure: Photochemical modeling of Cassini INMS data. J. Geophys. Res., 117, E01003.
Winkelstein, P., Caldwell, J., Kim, S. J. et al. (1983), A determination of the composition of the Saturnian stratosphere using the IUE. Icarus, 54, 309318.
Wong, A.-S., Lee, A. Y. T., Yung, Y. L. et al. (2000), Jupiter: Aerosol chemistry in the polar atmosphere. Astrophys. J. Lett., 534, L215L217.
Wong, A.-S., Yung, Y. L. and Friedson, A. J. (2003), Benzene and haze formation in the polar atmosphere of Jupiter. Geophys. Res. Lett., 30, 1447.
Yung, Y. L. and DeMore, W. B. (1999), Photochemistry of Planetary Atmospheres. Oxford: Oxford University Press.
Yung, Y. L., Drew, W. A., Pinto, J. P. et al. (1988), Estimation of the reaction rate for the formation of CH3O from H + H2CO: Implications for chemistry in the solar system. Icarus, 73, 516526.