Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: June 2013

Chapter 1 - Functional neuroanatomy and physiology in movement disorders

from Section 1 - Background concepts

Related content

Powered by UNSILO

References

1. PenneyJB Jr, YoungAB. Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 1983;6:73–94.
2. AlbinRL, YoungAB, PenneyJB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–75.
3. DeLongM, WichmannT. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 2009;15 Suppl 3:S237–40.
4. ObesoJA, LanciegoJL. Past, present, and future of the pathophysiological model of the basal ganglia. Front Neuroanat 2011;5:39.
5. RommelfangerKS, WichmannT. Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 2010;4:139.
6. DescarriesL, WatkinsKC, GarciaS, et al. Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J Comp Neurol 1996;375:167–86.
7. WichmannT, DostrovskyJO. Pathological basal ganglia activity in movement disorders. Neuroscience 2011 PMID: 21723919.
8. BraakH, GhebremedhinE, RubU, et al. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004;318:121–34.
9. FearnleyJM, LeesAJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114:2283–301.
10. EusebioA, BrownP. Synchronisation in the beta frequency-band – the bad boy of parkinsonism or an innocent bystander?Exp Neurol 2009;217:1–3.
11. BrownP, WilliamsD. Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol 2005;116:2510–19.
12. BrownP, OlivieroA, MazzoneP, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 2001;21:1033–8.
13. PaveseN, BrooksDJ. Imaging neurodegeneration in Parkinson’s disease. Biochem Biophys Acta 2009;1792:722–9.
14. VingerhoetsFJG, SchulzerM, CalneDB, et al. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion?Ann Neurol 1997;41:58–64.
15. WangJ, ZuoCT, JiangYP, et al. 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol 2007;254:185–90.
16. MooreRY, WhoneAL, BrooksDJ. Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol Dis 2008;29:381–90.
17. RakshiJS, UemaT, ItoK, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease. A 3D [18F]Dopa-PET study. Brain 1999;122:1637–50.
18. WhoneAL, MooreRY, PicciniP, et al. Plasticity of the nigropallidal pathway in Parkinson’s disease. Ann Neurol 2003;53:206–13.
19. DoderM, RabinerEA, TurjanskiN, et al. 11C-WAY 100635 PET study. Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 2003;60:601–5.
20. PaveseN, MettaV, BoseSK, et al. Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 2010;133:3434–43.
21. BohnenNI, KauferDI, HendricksonR, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006;253:42–7.
22. BohnenNI, MüllerML, KoeppeRA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009;73:1670–6.
23. EckertT, BarnesA, DhawanV, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.
24. EidelbergD, MoellerJR, DhawanV, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994;14:783–801.
25. MureH, HiranoS, TangCC, et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 2011;54:1244–53.
26. LozzaC, BaronJC, EidelbergD, et al. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 2004;22:236–45.
27. EidelbergD, MoellerJR, IshikawaT, et al. Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson’s disease. Ann Neurol 1996;39:450–9.
28. ObesoI, RayNJ, AntonelliF, et al. Combining functional imaging with brain stimulation in Parkinson’s disease. Int Rev Psychiatry 2011;23:467–75.
29. PlayfordED, JenkinsIH, PassinghamRE, et al. Impaired mesial frontal and putamen activation in Parkinson’s disease: a PET study. Ann Neurol 1992;32:151–61.
30. JahanshahiM, JenkinsIH, BrownRG, et al. Self-initiated versus externally triggered movements. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 1995;118:913–33.
31. SamuelM, Ceballos-BaumannAO, BoeckerH, et al. Motor imagery in normal subjects and Parkinson’s disease patients: an H215O PET study. Neuroreport 2001;12:821–8.
32. JenkinsIH, FernandezW, PlayfordED, et al. Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 1992;32:749–57.
33. DagherA, DoyonJ, OwenAM, et al. Medial temporal lobe activation in Parkinson’s disease during fronto-striatal tasks revealed by PET: evidence for cortical reorganization?Mov Disord 1998;13 Suppl 2: 238.
34. BrooksDJ, SamuelM. The effects of surgical treatment of Parkinson’s disease on brain function: PET findings. Neurology 2000;55 Suppl 6:S52–9.
35. WuT, HallettM. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 2005;128:2250–9.
36. MallolR, Barrós-LoscertalesA, LópezM, et al. Compensatory cortical mechanisms in Parkinson’s disease evidenced with fMRI during the performance of pre-learned sequential movements. Brain Res 2007;1147:265–71.
37. ProdoehlJ, SprakerM, CorcosD, et al. Blood oxygenation level-dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson’s disease. Mov Disord 2010;25:2035–43.
38. SkidmoreFM, YangM, BaxterL, et al. Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage 2011; PMID: 21924367.
39. PaulsenJS. Functional imaging in Huntington’s disease. Exp Neurol 2009;216:272–7.
40. PaveseN, PolitisM, TaiYF, et al. Cortical dopamine dysfunction in symptomatic and premanifest Huntington’s disease gene carriers. Neurobiol Dis 2010;37:356–61.
41. AntoniniA, LeendersKL, EidelbergD. [11C]-raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol 1998;43:253–5.
42. PaveseN, AndrewsTC, BrooksDJ, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 2003;126:1127–35.
43. AndrewsTC, WeeksRA, TurjanskiN, et al. Huntington’s disease progression. PET and clinical observations. Brain 1999;122:2353–63.
44. HolthoffVA, KoeppeRA, FreyKA, et al. Positron emission tomography measures of benzodiazepine receptors in Huntington’s disease. Ann Neurol 1993;34:76–81.
45. WeeksRA, CunninghamVJ, PicciniP, et al. 11C-diprenorphine binding in Huntington’s disease: a comparison of region of interest analysis with statistical parametric mapping. J Cereb Blood Flow Metab 1997;17:943–9.
46. Van LaereK, CasteelsC, DhollanderI, et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 2010;51:1413–17.
47. RosasHD, SalatDH, LeeSY, et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 2008;131:1057–68.
48. FeiginA, LeendersKL, MoellerJR, et al. Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study. J Nucl Med 2001;42:1591–5.
49. FeiginA, TangC, MaY, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 2007;130:2858–67.
50. WeeksRA, Ceballos-BaumannA, PicciniP, et al. Cortical control of movement in Huntington’s disease. A PET activation study. Brain 1997;120:1569–78.
51. BartensteinP, WeindlA, SpiegelS, et al. Central motor processing in Huntington’s disease. A PET study. Brain 1997;120:1553–67.
52. van EimerenT, SiebnerHR. An update on functional neuroimaging of parkinsonism and dystonia. Curr Opin Neurol 2006;19:412–19.
53. NeychevVK, GrossRE, LehéricyS, et al. The functional neuroanatomy of dystonia. Neurobiol Dis 2011;42:185–201.
54. TrostM, CarbonM, EdwardsC, et al. Primary dystonia: is abnormal functional brain architecture linked to genotype?Ann Neurol 2002;52:853–6.
55. ArgyelanM, CarbonM, NiethammerM, et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci 2009;29:9740–7.
56. GaribottoV, RomitoLM, EliaAE, et al. In vivo evidence for GABA(A) receptor changes in the sensorimotor system in primary dystonia. Mov Disord 2011;26:852–7.
57. CarbonM, NiethammerM, PengS, et al. Abnormal striatal and thalamic dopamine neurotransmission: genotype-related features of dystonia. Neurology. 2009;72:2097–103.
58. CalneDB, de la Fuente-FernándezR, KishoreA. Contributions of positron emission tomography to elucidating the pathogenesis of idiopathic parkinsonism and dopa responsive dystonia. J Neural Transm Suppl 1997;50:47–52.
59. RinneJO, IivanainenM, MetsähonkalaL, et al. Striatal dopaminergic system in dopa-responsive dystonia: a multi-tracer PET study shows increased D2 receptors. J Neural Transm, 2004;111:59–67.
60. AsanumaK, MaY, HuangC, et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol 2005;57:596–600.