Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T06:22:47.859Z Has data issue: false hasContentIssue false

2 - Open quantum system approaches to biological systems

from Part I - Introduction

Published online by Cambridge University Press:  05 August 2014

Alireza Shabani
Affiliation:
University of California
Masoud Mohseni
Affiliation:
Google
Seogjoo Jang
Affiliation:
University of New York
Akihito Ishizaki
Affiliation:
University of California Berkeley
Martin Plenio
Affiliation:
Universität Ulm
Patrick Rebentrost
Affiliation:
Harvard University
Alan Aspuru-Guzik
Affiliation:
Harvard University
Jianshu Cao
Affiliation:
Massachusetts Institute of Technology
Seth Lloyd
Affiliation:
Massachusetts Institute of Technology
Robert Silbey
Affiliation:
Massachusetts Institute of Technology
Masoud Mohseni
Affiliation:
Google
Yasser Omar
Affiliation:
Instituto de Telecomunicações
Gregory S. Engel
Affiliation:
University of Chicago
Martin B. Plenio
Affiliation:
Universität Ulm, Germany
Get access

Summary

Quantum biology, as introduced in the previous chapter, mainly studies the dynamical influence of quantum effects in biological systems. In processes such as exciton transport in photosynthetic complexes, radical pair spin dynamics in magnetoreception, and photo-induced retinal isomerization in the rhodopsin protein, a quantum description is a necessity rather than an option. The quantum modelling of biological processes is not limited to solving the Schrödinger equation for an isolated molecular structure. Natural systems are open to the exchange of particles, energy or information with their surrounding environments that often have complex structures. Therefore the theory of open quantum systems plays a key role in dynamical modelling of quantum-biological systems. Research in quantum biology and open quantum system theory have found a bilateral relationship. Quantum biology employs open quantum system methods to a great extent while serving as a new paradigm for development of advanced formalisms for non-equilibrium biological processes.

In this chapter, we overview the basic concepts of quantum mechanics and approaches to open quantum system (or decoherence) dynamics. Here, we do not intend to discuss all aspects of about a century-old theory of open quantum systems that dates back to the original work of Paul Dirac on atomic radiative emission and absorption (Dirac, 1927). Instead, we mainly focus on the integro-differential equations that are commonly used for modelling quantum-biological systems. Interested readers can learn more about open quantum systems in various books and review articles in both physics and chemistry literature, including the references (Kraus, 1983; Breuer and Petruccione, 2002; Kubo et al., 2003; Weiss, 2008; May and Kühn, 2011).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×