Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T04:29:34.362Z Has data issue: false hasContentIssue false

13 - Harnessing the swarm: technological applications of collective intelligence

from Part V - Evolution and Computing

Published online by Cambridge University Press:  05 April 2012

Aldo Poiani
Affiliation:
Monash University, Victoria
Get access

Summary

One of the most influential concepts in artificial intelligence is the notion of the swarm. That is, intelligent adaptive behaviour can arise in large groups of interacting agents, even when the individual agents have limited local information and use simple rules. Self-organisation provides a basic structure in such agent societies, while natural selection can drive the evolution of increasingly efficient and coordinated interactions through improved communication, information processing and agent specialisation. Such collective intelligences have evolved in diverse biological contexts, ranging from foraging and home-building colonies of ants, termites and bees, to the coordinated movements of vertebrate flocks and schools, to the exquisitely tuned dynamical responses of immune and neural systems. Here, we discuss how these biological models contribute to emerging technologies in fields such as optimisation, robotics, image processing, self-repairing systems and automatic structure design.

The main issues

Many modern engineering designs have been based on natural adaptations, a procedure termed biomimicry (Benyus, 2002). Among the more ambitious of these designs are those that incorporate the selective process itself. By evolving solutions to problems, researchers aim to capture the robust and adaptive properties of organisms. The growing complexity of information technology demands machines and algorithms with the ability to respond flexibly and intelligently to new situations without supervision, a feature common in living systems but virtually unheard of in normal engineering. David Green describes in Chapter 12 how natural selection can be used to solve difficult problems via evolutionary algorithms. Here, we will consider how evolutionary theory can contribute to technology more broadly through swarm intelligence (Beni, 2005; Bonabeau and Theraulaz, 2008; Camazine et al., 2003; Krause and Ruxton, 2002).

Type
Chapter
Information
Pragmatic Evolution
Applications of Evolutionary Theory
, pp. 234 - 258
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A.Guo, H.Liu, H. 2006 Swarm Intelligence: Foundations, Perspectives and ApplicationsSpringer, Berlin/Heidelberg3Google Scholar
Angeline, P. 1998 Evolutionary optimization versus particle swarm optimization: philosophy and performance differencesPorto, V.Saravanan, N.Waagen, D.Eiben, A.Lecture Notes in Computer Science: Evolutionary Programming VIISpringerBerlin601Google Scholar
Arbuckle, D.Requicha, A. 2004 Active self-assemblyIEEE International Conference on Robotics and Automation 1 896Google Scholar
Beckers, R.Holland, O. E.Deneubourg, J. L. 1994 From local actions to global tasks: stigmergy and collective roboticsArtificial Life IV 181 189Google Scholar
Beni, G. 2005 From swarm intelligence to swarm roboticsSahinm, E.Spears, W.Lecture Notes in Computer Science: Swarm RoboticsSpringerBerlin1Google Scholar
Benyus, J. M. 2002 Biomimicry: Innovation Inspired by NatureHarperPerennialNew York, NYGoogle Scholar
Blum, C.Dorigo, M. 2004 The hyper-cube framework for ant colony optimizationIEEE Transactions on Systems, Man and Cybernetics, Part B 34 1161CrossRefGoogle ScholarPubMed
Bonabeau, E. 1998 A model for the emergence of pillars, walls and royal chambers in termite nestsPhilosophical Transactions of the Royal Society B: Biological Sciences 353 1561CrossRefGoogle Scholar
Bonabeau, E.Theraulaz, G. 2008 Swarm smartsScientific American 18 40CrossRefGoogle Scholar
Bonner, J. T. 1971 Aggregation and differentiation in the cellular slime moldsAnnual Reviews in Microbiology 25 75CrossRefGoogle ScholarPubMed
Briscoe, G.Sadedin, S.Paperin, G. 2007 Biology of applied digital ecosystemsDigital Ecosystems and Technologies ConferenceIEEENew Jersey458Google Scholar
Brooks, R. A. 1990 Elephants don't play chessRobotics and Autonomous Systems 6 3CrossRefGoogle Scholar
Camazine, S.Deneubourg, J. L.Franks, N. R. 2003 Self-organization in Biological SystemsPrinceton University PressPrinceton, NJGoogle Scholar
Carpenter, G.Grossberg, S.Reynolds, J. 1991 ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural networkNeural Networks 4 565CrossRefGoogle Scholar
Cliff, D.Harvey, I.Husbands, P. 1992 Incremental Evolution of Neural Network Architectures for Adaptive BehaviourUKGoogle Scholar
Colorni, A.Dorigo, M.Maniezzo, V. 1991 Distributed optimization by ant coloniesProceedings of ECAL91 – European Conference on Artificial LifeElsevier PublishingParis134Google Scholar
Cormen, T. H.Leiserson, C. E.Rivest, R. L. 2003 Introduction to AlgorithmsMcGraw-Hill Science/Engineering/MathBoston, MAGoogle Scholar
Correll, N.Martinoli, A. 2006 Collective inspection of regular structures using a swarm of miniature robotsSpringer Tracts in Advanced Robotics: Proceedings of the Ninth International Symposium on Experimental Robotics (ISER-04)SpringerBerlinGoogle Scholar
Couzin, I. D. 2009 Collective cognition in animal groupsTrends in Cognitive Sciences 13 36CrossRefGoogle ScholarPubMed
Couzin, I. D.Krause, J.Franks, N. R. 2005 Effective leadership and decision-making in animal groups on the moveNature 433 513CrossRefGoogle ScholarPubMed
Daly, R.Shen, Q. 2009 Learning Bayesian network equivalence classes with ant colony optimizationJournal of Artificial Intelligence Research 35 391Google Scholar
Deneubourg, A.Aron, S.Goss, S. 1990 The self-organizing exploratory pattern of the Argentine antJournal of Insect Behavior 3 159CrossRefGoogle Scholar
Deneubourg, J. L.Goss, S.Franks, N. 1990 The dynamics of collective sorting robot-like ants and ant-like robotsProceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to AnimatsMIT PressCambridge, MA356Google Scholar
Diamond, J. 2006 Collapse: How Societies Choose to Fail or SucceedPenguinNew York, NYGoogle Scholar
Dorigo, M.Maniezzo, V.Colorni, A. 1991 The Ant System: An Autocatalytic Optimizing ProcessMilanItalyGoogle Scholar
Dorigo, M.Trianni, V.Şahin, E. 2004 Evolving self-organizing behaviors for a swarm-botAutonomous Robots 17 223CrossRefGoogle Scholar
Drexler, K. E. 1986 Engines of Creation: The Coming Era of NanotechnologyAnchorHarpswell, MEGoogle Scholar
Eberhart, R.Shi, Y. 2001 Particle swarm optimization: developments, applications and resourcesProceedings of the 2001 Congress on Evolutionary ComputationIEEENew JerseyGoogle Scholar
Eberhart, R. C.Hu, X. 1999 Human tremor analysis using particle swarm optimizationProceedings of the Congress on Evolutionary Computation, Washington DC, USAIEEENew Jersey1927Google Scholar
Eberhart, R. C.Shi, Y.Kennedy, J. 2001 Swarm Intelligence (The Morgan Kaufmann Series in Artificial Intelligence)Morgan KaufmannWaltham, MAGoogle Scholar
Emerson, A. E. 1938 Termite nests – a study of the phylogeny of behaviorEcological Monographs 8 247CrossRefGoogle Scholar
Fortnow, L.Homer, S. 2002 A short history of computational complexityThe History of Mathematical LogicNorth Holland PublishingAmsterdamGoogle Scholar
Freitas, R. A. 1983 Terraforming Mars and Venus using machine self-replicating systems/SRSBritish Interplanetary Society, Journal (Interstellar Studies) 36 139Google Scholar
Galehdar, A.Thiel, D. V.Lewis, A. 2009 Multiobjective optimization for small meander wire dipole antennas in a fixed area using ant colony systemInternational Journal of RF and Microwave Computer-Aided Engineering 19 592CrossRefGoogle Scholar
Garnier, S.Gautrais, J.Theraulaz, G. 2007 The biological principles of swarm intelligenceSwarm Intelligence 1 3CrossRefGoogle Scholar
Giles, J. 2004 Nanotech takes small step towards burying ‘grey goo’Nature 429 591CrossRefGoogle ScholarPubMed
Giles, J. 2005 Internet encyclopaedias go head to headNature 438 900CrossRefGoogle ScholarPubMed
Green, D. G.Leishman, T. G.Sadedin, S. 2006
Green, D. G.Leishman, T. G.Sadedin, S. 2010 Of ants and men – the role of complexity in social changeEvolutionary and Institutional Economics Review 6 259CrossRefGoogle Scholar
Halley, J. D.Winkler, D. A. 2008 Critical-like self-organization and natural selection: two facets of a single evolutionary process?Biosystems 92 148CrossRefGoogle ScholarPubMed
Handl, J.Meyer, B. 2007 Ant-based and swarm-based clusteringSwarm Intelligence 1 95CrossRefGoogle Scholar
Harada, K.Oetomo, D.Susilo, E. 2010 A reconfigurable modular robotic endoluminal surgical system: vision and preliminary resultsRobotica 28 171CrossRefGoogle Scholar
Heppner, F.Grenander, U. 1990 A stochastic nonlinear model for coordinated bird flocksKrasner, E.The Ubiquity of ChaosAAAS PublicationsWashington, DC233Google Scholar
Hölldobler, B.Wilson, E. O. 1990 The AntsBelknap PressHarvard, MACrossRefGoogle Scholar
Hornik, K.Stinchcombe, M.White, H. 1989 Multilayer feedforward networks are universal approximatorsNeural Networks 2 359CrossRefGoogle Scholar
Hsiang, T. -R.Arkin, E. M.Bender, M. A. 2003 Algorithms for rapidly dispersing robot swarms in unknown environmentsSpringer Tracts in Advanced Robotics:SpringerBerlin77Google Scholar
Imre Friedmann, E.Ocampo-Friedmann, R. 1995 A primitive cyanobacterium as pioneer microorganism for terraforming MarsAdvances in Space Research 15 243CrossRefGoogle Scholar
Ito, M.Noda, K.Hoshino, Y. 2006 Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network modelNeural Networks 19 323CrossRefGoogle ScholarPubMed
Johansson, C.Lansner, A. 2007 Towards cortex sized artificial neural systemsNeural Networks 20 48CrossRefGoogle ScholarPubMed
Juang, C. F. 2004 A hybrid of genetic algorithm and particle swarm optimization for recurrent network designIEEE transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 34 997CrossRefGoogle ScholarPubMed
Juang, C. F.Hsiao, C. M.Hsu, C. H. 2009 Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimizationIEEE Transactions on Fuzzy Systems 18 14CrossRefGoogle Scholar
Julian, G. E.Cahan, S. 1999 Undertaking specialization in the desert leaf-cutter ant Animal Behaviour 58 437CrossRefGoogle ScholarPubMed
Kassabalidis, I.Sharkawi, E l M. A.Marks, R. J. 2001 Swarm intelligence for routing in communication networksGlobal Telecommunications Conference, 2001. GLOBECOM'01IEEENew Jersey3613Google Scholar
Kauffman, S. A. 1993 The Origins of Order: Self Organization and Selection in EvolutionOxford University PressNew York, NYGoogle Scholar
Kennedy, J.Eberhart, R. 1995 Particle swarm optimizationProceedings of the IEEE International Conference on Neural Networks, 1995IEEENew Jersey1942Google Scholar
Knuth, D. E. 1997 Art of Computer Programming, Volume 1: Fundamental AlgorithmsAddison-Wesley ProfessionalBoston, MAGoogle Scholar
Korb, J. 2003 Thermoregulation and ventilation of termite moundsNaturwissenschaften 90 212CrossRefGoogle ScholarPubMed
Krause, J.Ruxton, G. D. 2002 Living in GroupsOxford University PressNew York, NYGoogle Scholar
Krause, J.Ruxton, G. D.Krause, S. 2009 Swarm intelligence in animals and humansTrends in Ecology and Evolution 25 28CrossRefGoogle ScholarPubMed
Kube, C.Bonabeau, E. 2000 Cooperative transport by ants and robotsRobotics and Autonomous Systems 30 85CrossRefGoogle Scholar
Langville, A. N.Meyer, C. D.Fernández, P. 2008 Google's PageRank and beyond: the science of search engine rankingsThe Mathematical Intelligencer 30 68Google Scholar
Merkle, D.Middendorf, M.Schmeck, H. 2002 Ant colony optimization for resource-constrained project schedulingIEEE Transactions on Evolutionary Computation 6 333CrossRefGoogle Scholar
Minsky, M. L. 1967 Computation: Finite and Infinite MachinesPrentice HallEnglewood Cliffs, NJGoogle Scholar
Minsky, M. L.Papert, S. A. 1987 Perceptrons – Expanded Edition: An Introduction to Computational GeometryMIT PressCambridge, MAGoogle Scholar
Muñoz Zavala, A.Hernández Aguirre, A.Villa Diharce, E. 2005 Particle evolutionary swarm optimization with linearly decreasing ε-toleranceGelbukh, A.Albornoz, Á.Terashima-Marín, H.MICAI 2005: Advances in Artificial IntelligenceSpringer, Berlin Heidelberg641CrossRefGoogle Scholar
Muñoz Zavala, A. E.Aguirre, A. H.Villa Diharce, E. R. 2005 Constrained optimization via particle evolutionary swarm optimization algorithm (PESO)GECCO'05: Proceedings of the 2005 Conference on Genetic and Evolutionary ComputationACMNew York, NY209CrossRefGoogle Scholar
Muñoz Zavala, A. E.Villa Diharce, E. R.Hernández Aguirre, A. 2005 Particle evolutionary swarm for design reliability optimizationEvolutionary Multi-Criterion OptimizationSpringerNew York, NY856CrossRefGoogle Scholar
Nicholson, J. A. 2005 Flash! mobs in the age of mobile connectivity. Journal 6Google Scholar
Papineau, D.Walker, J. J.Mojzsis, S. J. 2005 Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western AustraliaApplied and Environmental Microbiology 71 4822CrossRefGoogle ScholarPubMed
Parpinelli, R. S.Lopes, H. S.Freitas, A. A. 2002 Data mining with an ant colony optimization algorithmIEEE Transactions on Evolutionary Computation 6 321CrossRefGoogle Scholar
Perez, R.Behdinan, K. 2007 Particle swarm approach for structural design optimizationComputers and Structures 85 1579CrossRefGoogle Scholar
Pinto, P. C.Nägele, A.Dejori, M.Runkler, T. A. 2009 Using a local discovery ant algorithm for Bayesian network structure learningIEEE Transactions on Evolutionary Computation 13 767CrossRefGoogle Scholar
Pitts, W.McCulloch, W. 1947 How we know universals: the perception of auditory and visual formsBulletin of Mathematical Biology 9 127Google ScholarPubMed
Poli, R.Kennedy, J.Blackwell, T. 2007 Particle swarm optimizationSwarm Intelligence 1 33CrossRefGoogle Scholar
Polymath, D. H. J. 2010
Resnick, P.Kuwabara, K.Zeckhauser, R. 2000 Reputation systemsCommunications of the ACM 43 45CrossRefGoogle Scholar
Reynolds, C. W. 1987 Flocks, herds, and schools: a distributed behavioral modelComputer Graphics 21 25CrossRefGoogle Scholar
Ripley, B. D. 1996 Pattern Recognition and Neural NetworksCambridge University PressCambridgeCrossRefGoogle Scholar
Rojas, R. 1996 Neural Networks: A Systematic IntroductionSpringerNew York, NYCrossRefGoogle Scholar
Rosenblatt, F. 1958 The perceptron: a probabilistic model for information storage and organization in the brainPsychological Review 65 386CrossRefGoogle Scholar
Rowe, J. E.Vose, M. D.Wright, A. H. 2009 Reinterpreting no free lunchEvolutionary Computation 17 117CrossRefGoogle ScholarPubMed
Rubenstein, M.Shen, W. 2009 Scalable self-assembly and self-repair in a collective of robotsIROS IEEE/RSJ International Conference on Intelligent Robots and SystemsIEEENew Jersey1484Google Scholar
Şahin, E. 2005 From sources of inspiration to domains of applicationSahin, E.Spears, W.Lecture Notes in Computer Science: Swarm RoboticsSpringerBerlin10Google Scholar
Schumacher, C.Vose, M. D.Whitley, L. D. 2001 The no free lunch and problem description lengthSpector, L.Goodman, E. D.Wu, A.Langdon, W. B.Voigt, H. M.Gen, M.Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001)Morgan KaufmannSan Francisco, CA565Google Scholar
Shen, W. M.Will, P.Galstyan, A. 2004 Hormone-inspired self-organization and distributed control of robotic swarmsAutonomous Robots 17 93CrossRefGoogle Scholar
Sipser, M. 2005 Introduction to the Theory of ComputationCourse TechnologyKentuckyGoogle Scholar
Spears, W. M.Spears, D. F.Hamann, J. C. 2004 Distributed, physics-based control of swarms of vehiclesAutonomous Robots 17 137CrossRefGoogle Scholar
Su, M. -C.Chang, H. -T. 2001 A new model of self-organizing neural networks and its application in data projectionIEEE Transactions on Neural Networks 12 153Google ScholarPubMed
Trianni, V.Labella, T. H.Dorigo, M. 2004 Evolution of direct communication for a swarm-bot performing hole avoidanceAnt Colony, Optimization and Swarm IntelligenceSpringerBerlin174Google Scholar
Turgut, A.Çelikkanat, H.Gökçe, F. 2008 Self-organized flocking in mobile robot swarmsSwarm Intelligence 2 97CrossRefGoogle Scholar
Wachowiak, M. P.Smolikova, R.Zheng, Y. 2004 An approach to multimodal biomedical image registration utilizing particle swarm optimizationIEEE Transactions on Evolutionary Computation 8 289CrossRefGoogle Scholar
Werfel, J.Yam, Y. B.Nagpal, R. 2005 Building patterned structures with robot swarmsIJCAI'05: Proceedings of the 19th International Joint Conference on Artificial IntelligenceMorgan KaufmannSan Francisco, CA1495Google Scholar
Whitley, D.Rowe, J. 2008 Focused no free lunch theoremsGECCO'08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary ComputationACMNew York, NY811.CrossRefGoogle Scholar
Whitley, D.Watson, J. 2005 Complexity theory and the no free lunch theoremSearch MethodologiesSpringer USNew York, NY, pp. 317–39.Google Scholar
Winfield, A. F. T.Nembrini, J. 2006 Safety in numbers: fault-tolerance in robot swarmsInternational Journal of Modelling, Identification and Control 1 30CrossRefGoogle Scholar
Winfield, A. F. T.Sa, J.Gago, M. C. F. 2005 On formal specification of emergent behaviours in swarm robotic systemsInternational Journal of Advanced Robotic Systems 2 363CrossRefGoogle Scholar
Wolpert, D. H.Macready, W. G. 1995 No Free Lunch Theorems for SearchSanta Fe, NMGoogle Scholar
Wolpert, D. H.Macready, W. G. 1997 No free lunch theorems for optimizationIEEE Transactions on Evolutionary Computation 1 67CrossRefGoogle Scholar
Wu, Z. -Y.Song, H. -T. 2008
Xiong, W.Wang, C. 2009 A hybrid improved ant colony optimization and random forests feature selection method for microarray dataInternational Conference on Networked Computing and Advanced Information ManagementIEEENew Jersey559Google Scholar
Yao, X. 1993 Evolutionary artificial neural networksInternational Journal of Intelligent Systems 4 539CrossRefGoogle ScholarPubMed
Yoshida, H.Kawata, K.Fukuyama, Y. 2000 A particle swarm optimization for reactive power and voltage control considering voltage security assessmentIEEE Transactions on Power Systems 15 1232CrossRefGoogle Scholar
Zaka, I.Rehman, H.Naeem, M.Shah, S.Ahmad, J. 2008 Narrowband jammer excision in CDMA using particle swarm optimizationHuang, D. -S.Wunsch, D. C.Levine, D. S.Jo, K. -H.Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological IssuesSpringerBerlin, Heidelberg601Google Scholar
Zhang, G.Patuwo, B. E.Hu, M. Y. 1998 Forecasting with artificial neural networks: the state of the artInternational Journal of Forecasting 14 35CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×